Advertisement

Journal of Ornithology

, Volume 159, Issue 3, pp 631–641 | Cite as

Population dynamics and survival of the Red-necked Grebe Podiceps grisegena: results from a long-term study in eastern Poland

  • Jochen Bellebaum
  • K. Lesley Szostek
  • Janusz Kloskowski
Original Article

Abstract

Red-necked Grebe (RNG) breeding numbers have been declining in parts of Europe for more than 10 years. We have examined population trends and estimated, for the first time, survival rates of RNGs in a population in eastern Poland in order to explore the mechanisms behind the decline. We counted nesting pairs and recorded breeding success of RNGs nesting on fish ponds. Since 1996 we marked 91 adults and 79 young individually with colour rings and collected resightings of the marked birds. We estimated apparent survival with a Cormack–Jolly–Seber model and used estimates to create a Leslie matrix model for the study population. The population dropped from an estimated 69 breeding pairs in 1995 to a minimum of 12 pairs in 2010, and subsequently remained at 13–16 pairs until 2015. Average annual apparent survival was 0.16 in first-year females and 0.76 in adult females, or 0.18 and 0.79 for sexes pooled, respectively. Site fidelity was high only in adults. Matrix models based on the observed survival rates predicted the observed population decline until 2010. A stable model population was only reached when we increased first-year survival to 0.5. While winter severity had a strong influence on annual survival, low recruitment despite sufficient breeding success was the most important mechanism in this decline. Our observations suggest that natal dispersal, which was not compensated for by immigration, is likely the main proximate mechanism behind the decline.

Keywords

Adult survival First-year survival Breeding success Population decline Matrix models 

Zusammenfassung

Populationsdynamik und Überlebensrate von Rothalstauchern ( Podiceps grisegena ): Ergebnisse einer Langzeitstudie in Ostpolen

Die Brutbestände des Rothalstauchers nehmen in Teilen Europas seit mehr als 10 Jahren ab. Wir haben die Bestandsentwicklung einer Brutpopulation in Ostpolen mit dokumentiert und zum ersten Mal Überlebensraten von Rothalstauchern ermittelt, um die demographischen Mechanismen des Rückgangs zu untersuchen. Dazu wurden in fünf Fischteichgebieten die Anzahl der Brutpaare und der Bruterfolg ermittelt und seit 1996 insgesamt 91 Alt- und 79 Jungvögel mit Farbringen markiert. Anhand der Sichtungen der markierten Vögel wurden die lokalen Überlebensraten mit Cormack-Jolly-Seber-Modellen geschätzt. Aus den ermittelten Überlebensraten und dem Bruterfolg wurde ein Leslie-Matrixmodell für die Population erstellt. Der Bestand nahm von 69 Brutpaaren 1995 auf 12 Paare 2010 ab und blieb bis 2015 mit 13-16 Paaren stabil. Die lokalen Überlebensraten von Weibchen waren 0,16 im ersten und 0,76 ab dem zweiten Lebensjahr, für beide Geschlechter zusammengefasst 0,18 und 0,79. Nur Altvögel zeigten eine hohe Ortstreue. Matrixmodelle mit den beobachteten Überlebensraten bildeten den Rückgang bis 2010 zuverlässig ab. Eine stabile Modellpopulation wurde nur erreicht wenn die Überlebensrate im ersten Jahr auf 0,5 erhöht wurde. Strenge Winter hatten den stärksten Einfluss auf die jährliche Überlebensrate. Ausschlaggebend für den Bestandsrückgang war jedoch eine geringe Rekrutierung von Jungvögeln, trotz eines zum Bestandserhalt ausreichenden Bruterfolgs. Nach unseren Ergebnissen kommt eine nicht durch Zuwanderung kompensierte hohe Abwanderungsrate von Jungvögeln als wahrscheinlichste Ursache für den Bestandsrückgang in Betracht.

Notes

Acknowledgements

We are grateful to many volunteers for assistance with ringing and to all observers of ringed grebes. We thank Jürgen Holfort (BSH) for providing ice volume data and an anonymous reviewer for improving the manuscript. This research was supported by grants to J. K. from the State Committee for Scientific Research (KBN 6PO4F06620 and 3PO4F03623) and from the Polish Ministry of Science and Higher Education (MNiSW 2P04G05030). Permission to take blood samples was granted by the Local Ethical Commission (Lublin) and the Ministry of the Environment. All work reported complied with the applicable Polish law.

Supplementary material

10336_2018_1533_MOESM1_ESM.pdf (165 kb)
Supplementary material 1 (PDF 165 kb)

References

  1. Abt K, Konter A (2009) Survival rates of adult European grebes (Podicipedidae). Ardea 97:313–321CrossRefGoogle Scholar
  2. Bellebaum J, Schirmeister B, Sonntag N, Garthe S (2013) Decreasing but still high: bycatch of seabirds in gillnet fisheries along the German Baltic coast. Aquat Conserv Mar Freshwater Ecosyst 23:210–221CrossRefGoogle Scholar
  3. BirdLife International (2015) European Red List of birds. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  4. Blums P, Nichols JD, Hines JE, Mednis A (2002) Sources of variation in survival and breeding site fidelity in three species of European ducks. J Anim Ecol 71:438–450CrossRefGoogle Scholar
  5. Braasch A, Schauroth C, Becker PH (2009) Post-fledging body mass as a determinant of subadult survival in Common Terns Sterna hirundo. J Ornithol 150:401–407CrossRefGoogle Scholar
  6. Brzeziński M, Natorff M, Zalewski A, Żmihorski M (2012) Numerical and behavioural responses of waterfowl to the invasive American mink: a conservation paradox. Biol Conserv 147:68–78CrossRefGoogle Scholar
  7. Buckland ST, Magurran AE, Green RE, Fewster RM (2005) Monitoring change in biodiversity through composite indices. Philos Trans R Soc B 360:243–254CrossRefGoogle Scholar
  8. Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer, SunderlandGoogle Scholar
  9. Chandler RJ (1981) Influxes into Britain and Ireland of Red-necked Grebes and other waterbirds during winter 1978/79. Br Birds 74:55–81Google Scholar
  10. Chodkiewicz T, Kuczyński L, Sikora A, Chylarecki P, Neubauer G, Ławicki Ł, Stawarczyk T (2015) Ocena liczebności populacji ptaków lęgowych w Polsce w latach 2008–2012. Ornis Pol 56:149–189Google Scholar
  11. Choquet R, Lebreton J-D, Gimenez O, Reboulet A-M, Pradel R (2009) U-CARE: utilities for performing goodness of fit tests and manipulating CApture–REcapture data. Ecography 32:1071–1074CrossRefGoogle Scholar
  12. Direktoratet for naturforvaltning (2009) Handlingsplan for horndykker Podiceps auritus. Rapport 2009-7Google Scholar
  13. Ewing SR, Benn S, Cowie N, Wilson L, Wilson JD (2013) Effects of weather variation on a declining population of Slavonian Grebes Podiceps auritus. J Ornithol 154:995–1006CrossRefGoogle Scholar
  14. Fjeldså J (1982) The adaptive significance of local variations in the bill and jaw anatomy of North European Red-necked Grebes Podiceps grisegena. Ornis Fenn 59:84–98Google Scholar
  15. Fletcher D (2012) Estimating overdispersion when fitting a generalized linear model to sparse data. Biometrika 99:230–237CrossRefGoogle Scholar
  16. Green RE (1995) Diagnosing causes of bird population declines. Ibis 137(suppl):S47–S55Google Scholar
  17. Green RE (2004) A new method for estimating the adult survival rate of the Corncrake Crex crex and comparison with estimates from ring-recovery and ring-recapture data. Ibis 146:501–508CrossRefGoogle Scholar
  18. Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21CrossRefGoogle Scholar
  19. Kloskowski J (2000) Reproduction and feeding success of the Red-necked Grebe Podiceps grisegena at fish ponds, SE Poland. Acta omithol 35:85–89Google Scholar
  20. Kloskowski J (2003) Brood reduction in the Red-necked Grebe Podiceps grisegena. Ibis 145:233–243CrossRefGoogle Scholar
  21. Kloskowski J (2011) Consequences of the size structure of fish populations for their effects on a generalist avian predator. Oecologia 166:517–530CrossRefPubMedGoogle Scholar
  22. Kloskowski J (2012) Fish stocking creates an ecological trap for an avian predator via effects on prey availability. Oikos 121:1567–1576CrossRefGoogle Scholar
  23. Kloskowski J, Grela P, Krogulec J, Gąska M, Tchórzewski M (2006) Sexing Red-necked Grebes Podiceps grisegena by molecular techniques and morphology. Acta Ornithol 41:176–180CrossRefGoogle Scholar
  24. Konter A, Konter M (2006) Migration patterns and site fidelity of European Grebes Podicipedidae. Regulus Wiss Ber 21:1–17Google Scholar
  25. Koslowski G (1989) Die flächenbezogene Eisvolumensumme, eine neue Maßzahl für die Bewertung des Eiswinters an der Ostseeküste Schleswig-Holsteins und ihr Zusammenhang mit dem Charakter des meteorologischen winters. Deut Hydrogr Z 42:61–80CrossRefGoogle Scholar
  26. Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypothesis using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118CrossRefGoogle Scholar
  27. Lehikoinen A, Rintala J, Lammi E, Pöysä H (2016) Habitat-specific population trajectories in boreal waterbirds: alarming trends and bioindicators for wetlands. Anim Conserv 19:88–95CrossRefGoogle Scholar
  28. Maness TJ, Anderson DJ (2013) Predictors of juvenile survival in birds. Ornithol Monogr 78:1–55CrossRefGoogle Scholar
  29. Martin K (1995) Patterns and mechanisms for age-dependent reproduction and survival in birds. Am Zool 35:340–348CrossRefGoogle Scholar
  30. McParland CE, Paszkowski CA (2006) Effects of small-bodied fish on invertebrate prey and foraging patterns of waterbirds in Aspen Parkland wetlands. Hydrobiologia 567:43–55CrossRefGoogle Scholar
  31. Newton I (1998) Population limitation in birds. Academic Press, LondonGoogle Scholar
  32. Norevik G (2014) Horned Grebe Podiceps auritus and Red-necked Grebe Podiceps grisegena in Sweden 2011—results from a national survey. Ornis Svec 24:81–98Google Scholar
  33. Øyan HS, Anker-Nilssen T (1996) Allocation of growth in food-stressed Atlantic Puffin chicks. Auk 113:830–841CrossRefGoogle Scholar
  34. Pavón-Jordán D, Santangeli A, Lehikoinen A (2017) Effects of flyway-wide weather conditions and breeding habitat on the breeding abundance of migratory boreal waterbirds. J Avian Biol 48:988–996CrossRefGoogle Scholar
  35. Pechar L (2000) Impacts of long-term changes in fishery management on the trophic level and water quality in Czech fish ponds. Fish Manag Ecol 7:23–32CrossRefGoogle Scholar
  36. Powell LA (2007) Approximating variance of demographic parameters using the delta method: a reference for avian biologists. Condor 109:949–954CrossRefGoogle Scholar
  37. Pöysä H, Rintala J, Lehikoinen A, Väisänen RA (2013) The importance of hunting pressure, habitat preference and life history for population trends of breeding waterbirds in Finland. Eur J Wildl Res 59:245–256CrossRefGoogle Scholar
  38. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org
  39. Reid JM, Bignal EM, Bignal S, Mccracken DI, Bogdanova MI, Monaghan P (2008) Investigating patterns and processes of demographic variation: environmental correlates of pre-breeding survival in Red-billed Choughs Pyrrhocorax pyrrhocorax. J Anim Ecol 77:777–788CrossRefPubMedGoogle Scholar
  40. Rönkä MT, Saari CLV, Lehikoinen EA, Suomela J, Häkkilä K (2005) Environmental changes and population trends of breeding waterfowl in northern Baltic Sea. Ann Zool Fenn 42:587–602Google Scholar
  41. Roodbergen M, van der Werf B, Hötker H (2012) Revealing the contributions of reproduction and survival to the Europe-wide decline in meadow birds: review and meta-analysis. J Ornithol 153:53–74CrossRefGoogle Scholar
  42. Sæther B-E, Bakke O (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653CrossRefGoogle Scholar
  43. Schaub M, Kania W, Köppen U (2005) Variation of primary production during winter induces synchrony in survival rates in migratory White Storks Ciconia ciconia. J Anim Ecol 74:656–666CrossRefGoogle Scholar
  44. Schmutz JA (2014) Survival of adult Red-throated Loons (Gavia stellata) may be linked to marine conditions. Waterbirds 37(sp1):118–124CrossRefGoogle Scholar
  45. Sikora A, Rohde Z, Gromadzki M, Neubauer G, Chylarecki P (eds) (2007) Atlas rozmieszczenia ptaków lęgowych Polski 1985–2004. Bogucki Wyd Nauk, PoznańGoogle Scholar
  46. Skov H, Heinänen S, Žydelis R, Bellebaum J, Bzoma S, Dagys M, Durinck J, Garthe S, Grishanov G, Hario M, Kieckbusch JJ, Kube J, Kuresoo A, Larsson K, Luigujõe L, Meissner W, Nehls HW, Nilsson L, Petersen IK, Mikkola Roos M, Pihl S, Sonntag N, Stock A, Stipniece A, Wahl J (2011) Waterbird populations and pressures in the Baltic Sea. TemaNord 550Google Scholar
  47. Stempniewicz L (1994) Marine birds drowning in fishing nets in the Gulf of Gdańsk (southern Baltic): numbers, species composition, age and sex structure. Ornis Svec 4:123–132Google Scholar
  48. Stienen EW, Brenninkmeijer A (2002) Variation in growth in Sandwich Tern chicks Sterna sandvicensis and the consequences for pre- and post-fledging mortality. Ibis 144:567–576CrossRefGoogle Scholar
  49. Stout BE, Nuechterlein GL (1999) Red-necked Grebe (Podiceps grisegena). In: Poole A, Gill F (eds) The birds of North America, no. 465. The Birds of North America, PhiladelphiaGoogle Scholar
  50. Szücs I, Stundi L, Váradi L (2007) Carp farming in central and eastern Europe and a case study in multifunctional aquaculture. In: Leung PS, Lee C-S, O’Bryan PJ (eds) Species and system selection for sustainable aquaculture. Blackwell, Ames, IA, pp 389–413CrossRefGoogle Scholar
  51. Tjørve KMC, Tjørve E (2010) Shapes and functions of bird-growth models: how to characterise chick postnatal growth. Zoology 113:326–333CrossRefPubMedGoogle Scholar
  52. van der Jeugd HP, Larsson K (1998) Pre-breeding survival of barnacle geese Branta leucopsis in relation to fledgling characteristics. J Anim Ecol 67:953–966CrossRefPubMedGoogle Scholar
  53. Vlug JJ (2002) Podiceps grisegena Red-necked Grebe. BWP Update 4:139–179Google Scholar
  54. Wagner BMA, Hansson L-A (1998) Food competition and niche separation between fish and the Red-necked Grebe Podiceps grisegena (Boddaert, 1783). Hydrobiologia 368:75–81CrossRefGoogle Scholar
  55. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46(Suppl):120–138CrossRefGoogle Scholar
  56. Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall, LondonCrossRefGoogle Scholar
  57. Zimmerman GS, Gutierrez RJ, LaHaye WS (2007) Finite study areas and vital rates: sampling effects on estimates of Spotted Owl survival and population trends. J Appl Ecol 44:963–971CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2018

Authors and Affiliations

  • Jochen Bellebaum
    • 1
  • K. Lesley Szostek
    • 2
  • Janusz Kloskowski
    • 3
  1. 1.RostockGermany
  2. 2.IBL UmweltplanungOldenburgGermany
  3. 3.Institute of ZoologyPoznań University of Life SciencesPoznańPoland

Personalised recommendations