Advertisement

Journal of Ornithology

, Volume 159, Issue 2, pp 457–469 | Cite as

Bird communities of a temperate forest: spatio-temporal partitioning between resident and migratory species

  • Lou Barbe
  • Régis Morel
  • Yann Rantier
  • Jean-François Lebas
  • Alain Butet
Original Article

Abstract

A lot of bird species are declining in number in Europe, and studies of bird community assembly are fundamental to propose efficient conservation actions. Many studies were conducted on the regional variability of the abundance and distribution of bird communities, but few studies considered the local patch variability and intraseason dynamics, which permit one to mechanistically understand the patterns observed across entire seasons. In this study, we considered the intrapatch variability and dynamics of a breeding bird community in the forest patch of Corbière (Brittany, France). We tested whether bird community distribution was related to habitat characteristics, whether distribution patterns depended on life history traits of species and how patterns changed during the breeding season. Over 3 years, we used regular sampling and the point count method to sample the whole bird community within the forest patch. Our results show that several biotic and abiotic variables (distance to forest edge, deciduous tree cover, coppice cover, elevation) controlled individual abundances of bird species as well as indicators of the bird community (abundance, diversity, evenness). Moreover, we found that the abundances of resident birds, short-distance migrants and long-distance migrants were differently related to biotic and abiotic variables, and that these relationships varied during the breeding season. We suggest that the space partitioning may be explained by the temporal dynamics of the bird community. Specifically, the early arrival of resident and short-distance migrant species in the forest patch might enable them to preferentially choose high-quality habitats. The long-distance migrants considered in this study arrived later in the breeding season and might not find the same habitat availability, and they might consequently nest only close to the forest edge, in high sites or in sites with a sparse understorey. Our results show that local studies, taking into account migratory status and species dynamics on an intraseason scale, are important keys to understand distribution patterns of bird communities which are observed during entire breeding seasons.

Keywords

Forest biodiversity Bird community Species partitioning Migratory status Temporal dynamics 

Zusammenfassung

Vogelgemeinschaften in einem Wald der gemäßigten Zone: räumliche und zeitliche Trennung zwischen Standvögeln und ziehenden Arten

Viele Vogelarten in Europa nehmen ab, und Untersuchungen zur Zusammensetzung von Vogelgemeinschaften sind von grundlegender Bedeutung für die Ausweisung effizienter Schutzmaßnahmen. Es gibt viele Studien zur regionalen Variabilität hinsichtlich der Häufigkeit und Verbreitung von Vogelgemeinschaften; wenige davon berücksichtigen jedoch die lokale, kleinräumige Variabilität sowie die jahreszeitliche Dynamik, welche ein mechanistisches Verständnis der über den gesamten Saisonverlauf beobachteten Muster erlauben. In dieser Arbeit befassten wir uns mit der gebietsweisen Variabilität und der Dynamik der Brutvogelgemeinschaft im Waldgebiet von Corbière (Bretagne, Frankreich). Wir überprüften, ob die Verteilung der Vogelgemeinschaften mit den Habitateigenschaften zusammenhing, ob die Verteilungsmuster von der Lebensweise der Arten abhingen und wie sich diese Muster im Verlauf der Brutsaison veränderten. Über drei Jahre hinweg sammelten wir mittels regelmäßiger Stichproben und Punkt-Stopp-Zählungen Daten der ganzen Vogelgemeinschaft im Waldgebiet. Unsere Ergebnisse zeigten, dass mehrere biotische und abiotische Variablen – Entfernung vom Waldrand, Laubbaumbestand, Bedeckung mit Unterholz sowie die Höhe – sowohl die individuelle Häufigkeit der Vogelarten als auch die Kenngrößen der Vogelgemeinschaft – Häufigkeit, Artenreichtum und -ausgewogenheit – bestimmten. Überdies stellten wir fest, dass die Häufigkeit bei Standvögeln beziehungsweise Kurz- und Langstreckenziehern in unterschiedlicher Weise von den biotischen und abiotischen Variablen abhing und dass sich diese Beziehungen über die Brutsaison hinweg änderten. Unserer Ansicht nach lässt sich die räumliche Trennung durch die zeitliche Dynamik der Vogelgemeinschaft erklären. Insbesondere die frühe Ankunft der Standvögel und Kurzstreckenzieher im Waldgebiet könnte es ihnen erlauben, bevorzugt besonders gute Habitate zu wählen. Die in dieser Studie betrachteten Langstreckenzieher kamen später in der Brutsaison an und fanden daher unter Umständen nicht mehr dieselbe Auswahl an Habitaten vor, weshalb sie in der Folge nur noch in Waldrandnähe, an hochgelegenen Stellen oder an Orten mit spärlichem Unterwuchs nisten konnten. Unsere Ergebnisse zeigen, dass lokale Untersuchungen, welche den Zugstatus und die Artendynamik auf Jahresverlaufsebene berücksichtigen, eine wichtige Schlüsselfunktion für das Verständnis von Verteilungsmustern von Vogelgemeinschaften innehaben können, welche sich über die ganze Brutsaison hinweg beobachten lassen.

Notes

Acknowledgements

This study was financially supported by the Conseil Départemental d’Ille-et-Vilaine and was conducted in the protected sensitive natural area of the Forêt de la Corbière. We thank Sébastien Gervaise (Ligue de Protection des Oiseaux d'Ille-et-Vilaine 35), Philippe Briand, Sébastien Painchaud (Conseil Départemental d'Ille-et-Vilaine 35) and Emmanuel Chabot, Pierre-Yves Pasco, Geoffrey Vigour, Claire Delanoë and Nathalie Dewynter (Bretagne Vivante) for their field assistance during the 3 years of bird surveys. We are very grateful to Lucy Alford who reviewed and improved the English of the manuscript. We acknowledge the three anonymous referees for previous reviews and their constructive comments on the article. This article is a contribution from the research team UMR CNRS 6553 Ecobio and the research consortiumOSUR, Rennes.

Supplementary material

10336_2017_1523_MOESM1_ESM.docx (178 kb)
Supplementary material 1 (DOCX 178 kb)

References

  1. Adamík P, Kornan M (2004) Foraging ecology of two bark foraging passerine birds in an old-growth temperate forest. Ornis Fenn 81:13–22Google Scholar
  2. Albanese G, Davis CA (2015) Characteristics within and around stopover wetlands used by migratory shorebirds: is the neighborhood important? Condor 117:328–340CrossRefGoogle Scholar
  3. Amininasab SM, Vedder O, Schut E, de Jong B, Magrath MJ, Korsten P, Komdeur J (2016) Influence of fine-scale habitat structure on nest-site occupancy, laying date and clutch size in blue tits Cyanistes caeruleus. Acta Oecol 70:37–44CrossRefGoogle Scholar
  4. Balestrieri R, Basile M, Posillico M, Altea T, De Cinti B, Matteucci G (2015) A guild-based approach to assessing the influence of beech forest structure on bird communities. For Ecol Manag 356:216–223CrossRefGoogle Scholar
  5. Batary P, Baldi A (2004) Evidence of an edge effect on avian nest success. Conserv Biol 18:389–400CrossRefGoogle Scholar
  6. Berg Å (1997) Diversity and abundance of birds in relation to forest fragmentation, habitat quality and heterogeneity. Bird Study 44:355–366CrossRefGoogle Scholar
  7. Böhm SM, Kalko EK (2009) Patterns of resource use in an assemblage of birds in the canopy of a temperate alluvial forest. J Ornithol 150:799–814CrossRefGoogle Scholar
  8. Both C, Visser ME (2001) Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411:296–298CrossRefPubMedGoogle Scholar
  9. Bulluck JF, Rowe MP (2006) The use of southern Appalachian wetlands by breeding birds, with a focus on Neotropical migratory species. Wilson J Ornithol 118:399–410CrossRefGoogle Scholar
  10. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, HeidelbergGoogle Scholar
  11. Canterbury GE, Martin TE, Petit DR, Petit LJ, Bradford DF (2000) Bird communities and habitat as ecological indicators of forest condition in regional monitoring. Conserv Biol 14:544–558CrossRefGoogle Scholar
  12. Caprio E, Ellena I, Rolando A (2009) Assessing habitat/landscape predictors of bird diversity in managed deciduous forests: a seasonal and guild-based approach. Biodivers Conserv 18:1287–1303CrossRefGoogle Scholar
  13. Castaño-Villa GJ, Ramos-Valencia SA, Fontúrbel FE (2014) Fine-scale habitat structure complexity determines insectivorous bird diversity in a tropical forest. Acta Oecol 61:19–23CrossRefGoogle Scholar
  14. Chen J, Chen Z (2008) Extended Bayesian information criteria for model selection with large model spaces. Biometrika 95:759–771CrossRefGoogle Scholar
  15. Chessel D, Thioulouse J, Dray S (2003) Co-inertia analysis and the linking of ecological data tables. Ecology 84:3078–3089CrossRefGoogle Scholar
  16. Cockle KL, Martin K, Bodrati A (2017) Persistence and loss of tree cavities used by birds in the subtropical Atlantic Forest. For Ecol Manag 384:200–207CrossRefGoogle Scholar
  17. Cody ML (1981) Habitat selection in birds: the roles of vegetation structure, competitors, and productivity. Bioscience 31:107–113CrossRefGoogle Scholar
  18. Deng WH, Gao W (2005) Edge effects on nesting success of cavity-nesting birds in fragmented forests. Biol Conserv 126:363–370CrossRefGoogle Scholar
  19. Devictor V, Godet L, Julliard R, Couvet D, Jiguet F (2007) Can common species benefit from protected areas? Biol Conserv 139:29–36CrossRefGoogle Scholar
  20. Donovan TM, Jones PW, Annand EM, Thompson FR (1997) Variation in local-scale edge effects: mechanisms and landscape context. Ecology 78:2064–2075CrossRefGoogle Scholar
  21. Dubois PJ, Le Maréchal P, Olioso G, Yésou P (2008) Nouvel inventaire des oiseaux de France. Delachaux et Niestlé, ParisGoogle Scholar
  22. Estades CF, Temple SA (1999) Deciduous-forest bird communities in a fragmented landscape dominated by exotic pine plantations. Ecol Appl 9:573–585CrossRefGoogle Scholar
  23. Fagan WF, Cantrell RS, Cosner C (1999) How habitat edges change species interactions. Am Nat 153:165–182CrossRefPubMedGoogle Scholar
  24. Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manag 61:603–610CrossRefGoogle Scholar
  25. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 64:487–515CrossRefGoogle Scholar
  26. Flather CH, Sauer JR (1996) Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds. Ecology 77:28–35CrossRefGoogle Scholar
  27. Freemark KE, Merriam HG (1986) Importance of area and habitat heterogeneity to bird assemblages in temperate forest fragments. Biol Conserv 36:115–141CrossRefGoogle Scholar
  28. Gates JE, Giffen NR (1991) Neotropical migrant birds and edge effects at a forest-stream ecotone. Wilson Bull 103:204–217Google Scholar
  29. Gelman A, Hill J (2007) Data analysis using regression and multilevelhierarchical models. Cambridge University Press, New YorkGoogle Scholar
  30. Gharehaghaji M, Shabani AA, Feghhi J, Danehkar A, Kaboli M, Ashrafi S (2012) Effects of landscape context on bird species abundance of tree fall gaps in a temperate deciduous forest of northern Iran. For Ecol Manag 267:182–189CrossRefGoogle Scholar
  31. Goetz SJ, Steinberg D, Dubayah R, Blair B (2007) Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens Environ 108:254–263CrossRefGoogle Scholar
  32. Goetz SJ, Steinberg D, Betts MG, Holmes RT, Doran PJ, Dubayah R, Hofton M (2010) Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology 91:1569–1576CrossRefPubMedGoogle Scholar
  33. Goldstein MI, Corson MS, Lacher TE Jr, Grant WE (2003) Managed forests and migratory bird populations: evaluating spatial configurations through simulation. Ecol Model 162:155–175CrossRefGoogle Scholar
  34. Gregory RD, Vorisek P, Van Strien A, Gmelig Meyling AW, Jiguet F, Fornasari L, Reif J, Chylarecki P, Burfield IJ (2007) Population trends of widespread woodland birds in Europe. Ibis 149:78–97CrossRefGoogle Scholar
  35. Griffis-Kyle KL, Beier P (2005) Migratory strategy and seasonal patterns of bird diversity in relation to forest habitat. Am Midl Nat 153:436–443CrossRefGoogle Scholar
  36. Groupe Ornithologique Breton (2012) Atlas des oiseaux nicheurs de Bretagne. Delachaux et Niestlé, ParisGoogle Scholar
  37. Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am Nat 159:294–304CrossRefPubMedGoogle Scholar
  38. Hansbauer MM, Storch I, Knauer F, Pilz S, Küchenhoff H, Végvári Z, Pimentel RG, Metzger JP (2010) Landscape perception by forest understory birds in the Atlantic Rainforest: black-and-white versus shades of grey. Landsc Ecol 25:407–417CrossRefGoogle Scholar
  39. Herkert JR (1994) The effects of habitat fragmentation on midwestern grassland bird communities. Ecol Appl 4:461–471CrossRefGoogle Scholar
  40. Hoffmann J, Wittchen U, Stachow U, Berger G (2016) Moving window abundance—a method to characterise the abundance dynamics of farmland birds: the example of Skylark (Alauda arvensis). Ecol Indic 60:317–328CrossRefGoogle Scholar
  41. Holmes RT, Sherry TW, Sturges FW (1986) Bird community dynamics in a temperate deciduous forest: long-term trends at Hubbard Brook. Ecol Monogr 56:201–220CrossRefGoogle Scholar
  42. Isotti R, Battisti C, Luiselli L (2015) Seasonal and habitat-related changes in bird assemblage structure: applying a diversity/dominance approach to Mediterranean forests and wetlands. Isr J Ecol Evol 61:28–36CrossRefGoogle Scholar
  43. James FC, Wamer NO (1982) Relationships between temperate forest bird communities and vegetation structure. Ecology 63:159–171CrossRefGoogle Scholar
  44. Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: advances in long–distance migrants, delays in short–distance migrants. Proc R Soc Lond B 270:1467–1471CrossRefGoogle Scholar
  45. Jiguet F, Devictor V, Julliard R, Couvet D, Lee A (2007) Functional homogenization effect of urbanization on bird communities. Conserv Biol 21:741–751CrossRefPubMedGoogle Scholar
  46. Julliard R, Jiguet F, Couvet D (2003) Common birds facing global changes: what makes a species at risk? Glob Change Biol 10:148–154CrossRefGoogle Scholar
  47. Keller GS, Ross BD, Klute DS, Yahner RH (2009) Temporal changes in migratory bird use of edges during spring and fall seasons in Pennsylvania. Northeast Nat 16:535–552CrossRefGoogle Scholar
  48. Korňan M, Holmes RT, Recher HF, Adamik P, Kropil R (2013) Convergence in foraging guild structure of forest breeding bird assemblages across three continents is related to habitat structure and foraging opportunities. Community Ecol 14:89–100CrossRefGoogle Scholar
  49. Kroodsma RL (1984) Effect of edge on breeding forest bird species. Wilson Bull 96:426–436Google Scholar
  50. Lindenmayer DB, Fischer J (2013) Habitat fragmentation and landscape change: an ecological and conservation synthesis. Island, WashingtonGoogle Scholar
  51. Loiselle BA, Blake JG (1991) Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72:180–193CrossRefGoogle Scholar
  52. Ludwig M, Schlinkert H, Holzschuh A, Fischer C, Scherber C, Trnka A, Tscharntke T, Batary P (2012) Landscape-moderated bird nest predation in hedges and forest edges. Acta Oecol 45:50–56CrossRefGoogle Scholar
  53. Luoto M, Virkkala R, Heikkinen RK, Rainio K (2004) Predicting bird species richness using remote sensing in boreal agricultural-forest mosaics. Ecol Appl 14:1946–1962CrossRefGoogle Scholar
  54. Lynch JF, Whigham DF (1984) Effects of forest fragmentation on breeding bird communities in Maryland, USA. Biol Conserv 28:287–324CrossRefGoogle Scholar
  55. Martinez-Morales MA (2005) Landscape patterns influencing bird assemblages in a fragmented Neotropical cloud forest. Biol Conserv 121:117–126CrossRefGoogle Scholar
  56. McCollin D (1998) Forest edges and habitat selection in birds: a functional approach. Ecography 21:247–260CrossRefGoogle Scholar
  57. McGarigal K, Cushman SA, Ene E (2012) FRAGSTATS v4: spatial pattern analysis program for categorical and continuous maps. University of Massachusetts, AmherstGoogle Scholar
  58. Mönkkönen M, Helle P, Soppela K (1990) Numerical and behavioural responses of migrant passerines to experimental manipulation of resident tits (Parus spp.): heterospecific attraction in northern breeding bird communites? Oecologia 85:218–225CrossRefPubMedGoogle Scholar
  59. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62CrossRefPubMedGoogle Scholar
  60. Naoe S, Sakai S, Sawa A, Masaki T (2011) Seasonal difference in the effects of fragmentation on seed dispersal by birds in Japanese temperate forests. Ecol Res 26:301–309CrossRefGoogle Scholar
  61. Patterson MP, Best LB (1996) Bird abundance and nesting success in Iowa CRP fields: the importance of vegetation structure and composition. Am Midl Nat 135:153–167CrossRefGoogle Scholar
  62. Penhollow ME, Stauffer F (2000) Large-scale habitat relationships of Neotropical migratory birds in Virginia. J Wildl Manag 64:362–373CrossRefGoogle Scholar
  63. Petit DR, Petit KE, Grubb TC Jr (1985) On atmospheric moisture as a factor influencing distribution of breeding birds in temperate deciduous forest. Wilson Bull 97:88–96Google Scholar
  64. Poulsen BO (2002) Avian richness and abundance in temperate Danish forests: tree variables important to birds and their conservation. Biodivers Conserv 11:1551–1566CrossRefGoogle Scholar
  65. Proença VM, Pereira HM, Guilherme J, Vicente L (2010) Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecol 36:219–226CrossRefGoogle Scholar
  66. Ralph CJ, Droege S, Sauer JR (1995) Managing and monitoring birds using point counts: standards and applications. In: Ralph CJ, Droege S, Sauer JR (eds) Monitoring bird populations by point counts. General technical report PSW-GTR-149. USDA Forest Service, Albany, pp 161–168Google Scholar
  67. Raymond CM, Fazey I, Reed MS, Stringer LC, Robinson GM, Evely AC (2010) Integrating local and scientific knowledge for environmental management. J Environ Manag 91:1766–1777CrossRefGoogle Scholar
  68. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  69. Renner SC, Gossner MM, Kahl T, Kalko EK, Weisser WW, Fischer M, Allan E (2014) Temporal changes in randomness of bird communities across central Europe. PLoS One 9:e112347.  https://doi.org/10.1371/journal.pone.0112347 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153CrossRefGoogle Scholar
  71. Ries L, Sisk TD (2004) A predictive model of edge effects. Ecology 85:2917–2926CrossRefGoogle Scholar
  72. Robinson SK, Thompson RF, Donovan MT, Whitehead DR, Faaborg J (1995) Regional forest fragmentation and the nesting success of migratory birds. Science 267:93–102CrossRefGoogle Scholar
  73. Rodewald AD (2002) Nest predation in forested regions: landscape and edge effects. J Wildl Manag 66:634–640CrossRefGoogle Scholar
  74. Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, Van Bommel FP (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol Conserv 131:93–105CrossRefGoogle Scholar
  75. Thompson ID, Wiebe P, Kirk DA (2016) Resident and cavity-nesting avian community is affected by amount but not age of white pine in central Ontario mature mixedwood forests. Can J For Res 46:725–737CrossRefGoogle Scholar
  76. Thomson RL, Forsman JT, Mönkkönen M (2003) Positive interactions between migrant and resident birds: testing the heterospecific attraction hypothesis. Oecologia 134:431–438CrossRefPubMedGoogle Scholar
  77. Tryjanowski P, Kuźniak S, Sparks TH (2005) What affects the magnitude of change in first arrival dates of migrant birds? J Ornithol 146:200–205CrossRefGoogle Scholar
  78. Vetter D, Rücker G, Storch I (2013) A meta-analysis of tropical edge effects on bird nest predation risk: edge effect in avian nest predation. Biol Conserv 159:382–395CrossRefGoogle Scholar
  79. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, HeidelbergCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  • Lou Barbe
    • 1
  • Régis Morel
    • 2
  • Yann Rantier
    • 1
  • Jean-François Lebas
    • 3
  • Alain Butet
    • 1
  1. 1.UMR CNRS 6553 ECOBIO, Université de Rennes 1—OSURRennes CedexFrance
  2. 2.Bretagne VivanteMaison de la Consommation et de l’EnvironnementRennesFrance
  3. 3.Département d’Ille-et-VilaineService Espaces NaturelsRennes CedexFrance

Personalised recommendations