Journal of Ornithology

, Volume 159, Issue 1, pp 265–273 | Cite as

Productivity is related to nest site protection and nesting substrate in a German Osprey population

  • David CanalEmail author
  • Virginia Morandini
  • Beatriz Martín
  • Torsten Langgemach
  • Roberto Muriel
  • Manuela de Lucas
  • Miguel Ferrer
Original Article


The Osprey (Pandion haliaetus) is an emblematic example of conservation. Currently, the species is progressively recovering in population size and range after dramatic reductions as a consequence of human persecution and the use of pesticides in the nineteenth and twentieth centuries. Here, we analysed the population trend and productivity in relation to the nesting substrate (artificial structures or trees) and the protection status of the nest location (inside or outside protected areas) in the eastern German population of Ospreys. The Osprey population steadily grew during the study period (2000–2009), accompanied by the increased use of artificial structures for nesting, possibly due to the scarcity of suitable natural nest sites in the region. Pairs nesting in trees showed higher variance in productivity than those nesting on artificial supports during the study period. Further, the productivity recorded in Ospreys nesting on natural sites decreased during the study period, regardless of the protection status of the nest location, whereas it did not vary for pairs nesting on artificial structures. The productivity of Ospreys was also related to the protection status of the nest location since pairs breeding inside protected areas, either in natural or on artificial nest sites, showed higher productivity than pairs nesting outside protected areas. These findings suggest that the protection of the nest location and the type of substrate used for nesting are relevant factors underlying the breeding performance in this Osprey population and are therefore key to its management.


Productivity Protected areas Nesting substrate Artificial nests Osprey Pandion haliaetus 


Reproduktion des Fischadlers hängt vom Schutzstatus der Horstumgebung und vom Nistplatztyp ab

Der Fischadler (Pandion haliaetus) ist ein Wahrzeichen für erfolgreichen Artenschutz. Nach dramatischem Rückgang durch menschliche Verfolgung und Pestizide im 19. und 20. Jahrhundert stieg die Populationsgröße in den letzten Jahrzehnten wieder an, und in vielen Regionen hat sich auch das Areal vergrößert. Hier analysieren wir den Populationstrend und die Reproduktion von Fischadlern in Ostdeutschland in Abhängigkeit vom Nistplatztyp (künstliche Strukturen vs. Bäume) und dem Schutzstatus des Nistplatzes (innerhalb vs. außerhalb von Naturparks, Biosphärenreservaten und einem Nationalpark). Die Fischadlerpopulation ist im betrachteten Zeitraum 2002–2009 stetig gestiegen, wobei—wohl in Ermangelung geeigneter alter Nistbäume—zunehmend anthropogene Strukturen, vor allem Gittermasten genutzt werden. Paare, die auf Bäumen nisten, zeigen eine höhere Varianz in der Zahl der Nachkommen als Paare, die auf künstlichen Strukturen nisten. Die Reproduktion der Fischadler auf natürlichen Nistplätzen hat im Verlauf der Untersuchungszeit abgenommen, unabhängig vom Schutzstatus der Umgebung. Dagegen hat sich Reproduktion der Fischadler auf künstlichen Strukturen nicht verändert. Paare innerhalb von Schutzgebieten hatten eine höhere Produktivität als Paare außerhalb von Schutzzonen, egal ob auf natürlichen oder künstlichen Nistplätzen. Die Ergebnisse weisen darauf hin, dass Schutzgebiete und der Nistplatztyp für die Reproduktion in dieser Fischadlerpopulation und ihr Management relevant sind.



We thank all the nest site caretakers in the state of Brandenburg who provided all basic data and contribute to Osprey conservation in the field. We also thank Torsten Ryslavy for collecting and managing the data, and Phil Whitfield and one anonymous referee for their constructive comments on the manuscript.


  1. Bai M-L, Schmidt D, Gottschalk E, Mühlenberg M (2009) Distribution pattern of an expanding Osprey (Pandion haliaetus) population in a changing environment. J Ornithol 150:255–263. doi: 10.1007/s10336-008-0345-3 CrossRefGoogle Scholar
  2. Baril LM, Smith DW, Drummer T, Koel TM (2013) Implications of cutthroat trout declines for breeding Ospreys and Bald Eagles at Yellowstone Lake. J Raptor Res 47:234–245. doi: 10.3356/JRR-11-93.1 CrossRefGoogle Scholar
  3. Bierregaard RO, Poole AF, Washburn BE (2014) Ospreys (Pandion haliaetus) in the 21st century: populations, migration, management, and research priorities. J Raptor Res 48:301–308. doi: 10.3356/0892-1016-48.4.301 CrossRefGoogle Scholar
  4. Camacho C, Palacios S, Sáez P et al (2014) Human-induced changes in landscape configuration influence individual movement routines: lessons from a versatile, highly mobile species. PLoS ONE 9:e104974. doi: 10.1371/journal.pone.0104974 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cardador L, Carrete M, Mañosa S (2011) Can intensive agricultural landscapes favour some raptor species? The Marsh harrier in north-eastern Spain. Anim Conserv 14:382–390. doi: 10.1111/j.1469-1795.2011.00449.x CrossRefGoogle Scholar
  6. Caro T, Gardner TA, Stoner C et al (2009) Assessing the effectiveness of protected areas: paradoxes call for pluralism in evaluating conservation performance. Divers Distrib 15:178–182. doi: 10.1111/j.1472-4642.2008.00522.x CrossRefGoogle Scholar
  7. Cartron JLE (2000) Status and productivity of Ospreys along the eastern coast of the Gulf of California: 1992–1997. J Field Ornithol 71:298–309CrossRefGoogle Scholar
  8. Castellanos A, Ortega-Rubio A (1995) Artificial nesting sites and Ospreys at Ojo de Liebre and Guerrero Negro lagoons, Baja California Sur, Mexico. J Field Ornithol 66:117–127Google Scholar
  9. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453CrossRefGoogle Scholar
  10. Coetzee BWT, Gaston KJ, Chown SL (2014) Local scale comparisons of biodiversity as a test for global protected area ecological performance: a meta-analysis. PLoS ONE 9:e105824. doi: 10.1371/journal.pone.0105824 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Devictor V, Godet L, Julliard R et al (2007) Can common species benefit from protected areas? Biol Conserv 139:29–36. doi: 10.1016/j.biocon.2007.05.021 CrossRefGoogle Scholar
  12. Donazar JA, Ceballos O (1989) Selective predation by Eagle Owl Bubo bubo on rabbits Oryctolagus cuniculus: age and sex preferences. Ornis Scand 20:117–122CrossRefGoogle Scholar
  13. Donazar JA, Hiraldo F, Bustamante J (1993) Factors influencing nest site selection, breeding density and breeding success in the bearded vulture. J Appl Ecol 30:504–514CrossRefGoogle Scholar
  14. Ewins P (1996) The use of artificial nest sites by an increasing population of Ospreys in the Canadian Great Lakes Basin. In: Bird D, Varland D, Negro J (eds) Raptors in human landscapes: adaptations to built and cultivated environments. Academic, San Diego, pp 109–123Google Scholar
  15. Ferrer M, Donazar JA (1996) Density-dependent fecundity by habitat heterogeneity in an increasing population of Spanish Imperial Eagles. Ecology 77:69–74. doi: 10.2307/2265655 CrossRefGoogle Scholar
  16. Ferrer M, Hiraldo F (1991) Evaluation of management techniques for the Spanish imperial eagle. Wildl Soc Bull 19:436–442Google Scholar
  17. Ferrer M, Hiraldo F (1992) Man-induced sex-biased mortality in the Spanish imperial eagle. Biol Conserv 60:57–60. doi: 10.1016/0006-3207(92)90799-S CrossRefGoogle Scholar
  18. Ferrer M, Newton I, Casado E (2008) Density dependence hypotheses and the distribution of fecundity. J Anim Ecol 77:341–345. doi: 10.1111/j.1365-2656.2008.01471.x CrossRefPubMedGoogle Scholar
  19. Gelman A, Hill J (2006) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. González LM, Bustamante J, Hiraldo F (1990) Factors influencing the present distribution of the Spanish imperial eagle Aquila adalberti. Biol Conserv 51:311–319. doi: 10.1016/0006-3207(90)90116-7 CrossRefGoogle Scholar
  21. Grove RA, Henny CJ, Kaiser JL (2009) Osprey: worldwide sentinel species for assessing and monitoring environmental contamination in rivers, lakes, reservoirs, and estuaries. J Toxicol Environ Health B 12:25–44. doi: 10.1080/10937400802545078 CrossRefGoogle Scholar
  22. Janzen DH (1986) The eternal and external threat. In: Soulé ME (ed) Conservation Biology: the Science and Scarcity and Diversity. Sinauer Associates, Sunderland, MA, pp 286–303Google Scholar
  23. Johnston RF (2001) The synanthropic birds of North America. In: Marzluff JM, Bowman R, Donnelly R (eds) Avian ecology and conservation in an urbanizing world. Kluwer, Norwell, pp 49–67CrossRefGoogle Scholar
  24. Kapfer JM, Mueller WP, Bub BR, Engelhardt JW (2010) The response of nesting Ospreys (Pandion haliaetus) to maintenance activities along transmission lines in central Wisconsin. Passeng Pigeon 72:3–11Google Scholar
  25. Kuznetsova A, Brockhoff PB, Christensen RHB (2015) lmerTest: tests in linear mixed effects models. R package version 2.0-32.
  26. Langgemach T, Thoms M, Litzkow B, Stein A (2008) Horstschutz in Brandenburg. Ber Vogelschutz 45:39–50Google Scholar
  27. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  28. Lõhmus A (2001) Habitat selection in a recovering Osprey Pandion haliaetus population. Ibis (Lond 1859) 143:651–657. doi: 10.1111/j.1474-919X.2001.tb04893.x CrossRefGoogle Scholar
  29. Marzluff J, McGowan K, Donelly R, Richard L (2001) Causes and consequences of expanding American Crow populations. In: Marzluff JM, Bowman R, Donelly R (eds) Avian ecology and conservation in an urbanizing world. Kluwer, Norwell, pp 332–363CrossRefGoogle Scholar
  30. Matesanz S, Gimeno TE, de la Cruz M, Escudero A, Valladares F (2011) Competition may explain the finescale spatial patterns and genetic structure of two co-occurring plant congeners. J Ecol 99:838-848 CrossRefGoogle Scholar
  31. Meyburg BU, Manowsky O, Meyburg C (1996) The Osprey in Germany: its adaptation to environments altered by man. In: Bird D, Varland D, Negro J (eds) Raptors in human landscapes. adaptations to built and cultivated environments. Academic, San Diego, pp 125–135Google Scholar
  32. Newton I (1979) Population ecology of raptors. Poyser, BerkhamstedGoogle Scholar
  33. Newton I, Marquiss M, Weir D, Moss D (1977) Spacing of Sparrowhawk nesting territories. J Anim Ecol 46:425–441CrossRefGoogle Scholar
  34. Oden NL, Sokal RR (1986) Directional autocorrelation: an extension of spatial correlograms to two dimensions. Syst Zool 35:608–617. doi: 10.2307/2413120 CrossRefGoogle Scholar
  35. Pedrini P, Sergio F (2001) Density, productivity, diet, and human persecution of Golden Eagles (Aquila chrysaetos) in the central-eastern Italian Alps. J Raptor Res 35:40–48Google Scholar
  36. Poole A (1981) The effect of human disturbance on Osprey reproductive success. Col Waterbirds 4:20–27 CrossRefGoogle Scholar
  37. Poole A (1989a) Ospreys: a natural and unnatural history. Cambridge University Press, CambridgeGoogle Scholar
  38. Poole AF (1989b) Regulation of Osprey Pandion haliaetus populations: the role of nest side availability. In: Meyburg R, Chancellor B (eds) Raptors in the modern world. World Working Group on Birds of Prey, BerlinGoogle Scholar
  39. Postupalsky S (1978) Artificial nesting platforms for Ospreys and Bald Eagles. In: Temple SA (ed) Endangered birds: management techniques for observing endangered species. University of Wisconsin Press, Madison, pp 35–45Google Scholar
  40. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  41. Rodríguez B, Rodríguez A, Siverio M, Siverio F (2013) Conservation implications of past and present nesting habitat selection of the endangered Osprey Pandion haliaetus population of the Canary Islands. Ibis (Lond 1859) 155:891–897. doi: 10.1111/ibi.12089 CrossRefGoogle Scholar
  42. Saurola P (1997) The Osprey (Pandion haliaetus) and modern forestry: a review of population trends and their causes in Europe. J Raptor Res 31:129–137. doi: 10.3356/JRR-13-OSPR-13-03.1 Google Scholar
  43. Schmidt D (2010) Der Brutbestand des Fischadlers Pandion haliaetus in Deutschland im frühen 21. Jahrhundert. Charadriuos 10–17Google Scholar
  44. Schmidt-Rothmund D, Dennis R, Saurola P (2014) The Osprey in the western Palearctic: breeding population size and trends in the early 21st century. J Raptor Res 48:375–386CrossRefGoogle Scholar
  45. Sergio F, Boto A, Scandolara C, Bogliani G (2002) Density, nest sites, diet and productivity of Common Buzzards (Buteo buteo) in the Italian pre-Alps. J Raptor Res 36:24–32Google Scholar
  46. Thiollay JM (2006) The decline of raptors in West Africa: long-term assessment and the role of protected areas. Ibis (Lond 1859) 148:240–254. doi: 10.1111/j.1474-919X.2006.00531.x CrossRefGoogle Scholar
  47. Trimper PG, Standen NM, Lye LM et al (1998) Effects of low-level jet aircraft noise on the behaviour of nesting osprey. J Appl Ecol 35:122–130. doi: 10.1046/j.1365-2664.1998.00290.x CrossRefGoogle Scholar
  48. Van Daele LJ, Van Daele HA (1982) Factors affecting the productivity of ospreys nesting in west-central Idaho. Condor 84:292–299CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Applied Ecology GroupDoñana Biological Station (EBD-CSIC)SevilleSpain
  2. 2.Migres FoundationAlgecirasSpain
  3. 3.Brandenburg State Office for Environment, Bird Conservation CentreNennhausenGermany

Personalised recommendations