Timing of natal nests is an important factor affecting return rates of juvenile Great Reed Warblers

  • Kateřina Sosnovcová
  • Jaroslav Koleček
  • Milica Požgayová
  • Václav Jelínek
  • Michal Šulc
  • Petra Steidlová
  • Marcel Honza
  • Petr Procházka
Original Article

Abstract

In many bird species, return rates tend to be greatest in the vicinity of their hatching site, thus natal philopatry is an important trait in avian demography. In the present study, we examined how conditions in natal nests affect return rates and dispersal distances of a long-distance migratory passerine. From 2008 to 2016, we studied a colour-ringed population of the Great Reed Warbler Acrocephalus arundinaceus breeding in southeastern Czech Republic. Almost 10% of the 1430 ringed individuals returned to the study site within 2 years after fledging. Birds originating from earlier broods were more likely to return than birds from delayed broods. The variation in local dispersal distances was explained by the sex of the recruits: males dispersed shorter distances than females. There was no evidence that return rates and dispersal distances in Great Reed Warbler are related to other factors closely linked to the condition in the natal nest, namely brood social status and brood size. While the higher return rates of the juveniles from earlier broods is in concordance with the findings of other studies, the sex-related difference in dispersal distances does not correspond with what was found in Great Reed Warbler juveniles in other studies and adults at the same study site. Our results show that early breeding produces more local recruits and that sex-biased dispersal may be site specific.

Keywords

Acrocephalus arundinaceus Juvenile condition Juvenile survival Local dispersal distances Natal philopatry 

Zusammenfassung

Der Zeitpunkt ihres Schlüpfens ist ein wichtiger Faktor für die Rückkehrrate junger Drosselrohrsänger in ihr eigenes Brutgebiet

Bei vielen Vogelarten scheinen die Tiere am häufigsten in die Nähe desjenigen Ortes zurückzukehren, an dem sie selbst geschlüpft sind. Somit ist Geburtsortstreue ein wichtiges Merkmal der Vogel-Demographie. In der vorliegenden Studie haben wir untersucht, wie bei einem Langstreckenzieher die Verhältnisse im Schlüpfnest die Rückkehrrate und die Distanzen zum Nest beeinflussen. Von 2008 bis 2016 untersuchten wir eine farbig beringte Population des Drosselrohrsängers (Acrocephalus arundinaceus) in ihrem Brutgebiet im süd-östlichen Teil der Tschechischen Republik. Innerhalb von 2 Jahren nach dem Ausfliegen kehrten fast 10% der 1430 beringten Tiere in dieses Gebiet zurück. Dabei kehrten früh geschlüpfte Tiere mit höherer Wahrscheinlichkeit zurück als Tiere aus späteren Bruten. Unterschiede in den örtlichen Distanzen zum Schlüpfnest erklärten sich anhand des Geschlechts der untersuchten Tiere: Männchen hielten eine kürzere Distanz zum Schlüpfnest als Weibchen. Es gab keine Hinweise darauf, dass diese Distanzen oder die Rückkehrraten bei den Drosselrohrsängern mit anderen Faktoren zusammenhängen, die eng mit den Verhältnissen im Schlüpfnest verknüpft sind, in erster Linie Gelegegröße und sozialer Status des einzelnen Nestlings. Während die höhere Rückkehrrate früh geschlüpfter Vögel gut zu den Ergebnissen aus anderen Studien mit Drosselrohrsängern passt, ist dies nicht der Fall für den geschlechtsspezifischen Unterschied in den Distanzen zum Schlüpfnest. Unsere Ergebnisse zeigen, dass frühes Brüten zu einer größeren Anzahl von ortstreuen Rückkehrern führt, wohingegen eine geschlechtsabhängige Entfernung zum eigenen Schlüpfnest ortsspezifisch sein könnte.

Supplementary material

10336_2017_1492_MOESM1_ESM.docx (522 kb)
Supplementary material 1 (DOCX 523 kb)

References

  1. Baker MC, Sherman GL, Theimer TC, Bradley DC (1982) Population biology of White-crowned Sparrows: residence time and local movements of juveniles. Behav Ecol Sociobiol 11:133–137CrossRefGoogle Scholar
  2. Barba E, Gil-Delgado JA, Monrós JS (1995) The costs of being late: consequences of delaying Great Tit Parus major first clutches. J Anim Ecol 64:642–651CrossRefGoogle Scholar
  3. Barbraud C, Johnson AR, Bertault G (2003) Phenotypic correlates of post-fledging dispersal in a population of Greater Flamingos: the importance of body condition. J Anim Ecol 72:246–257CrossRefGoogle Scholar
  4. Bates D, Maechler M, Bolker B et al (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  5. Bensch S (1996) Female mating status and reproductive success in the Great Reed Warbler: is there a potential cost of polygyny that requires compensation? J Anim Ecol 65:283–296CrossRefGoogle Scholar
  6. Bensch S, Hasselquist D (1991) Territory infidelity in the polygynous Great Reed Warbler Acrocephalus arundinaceus: the effect of variation in territory attractiveness. J Anim Ecol 60:857–871CrossRefGoogle Scholar
  7. Bensch S, Hasselquist D (1992) Evidence for active female choice in a polygynous warbler. Anim Behav 44:301–311CrossRefGoogle Scholar
  8. Bensch S, Hasselquist D, Nielsen B, Hansson B (1998) Higher fitness for philopatric than for immigrant males in a semi-isolated population of Great Reed Warblers. Evolution 52:877–883CrossRefPubMedGoogle Scholar
  9. Bosschieter L, Goedhart PW, Foppen RPB, Vos CC (2010) Modelling small-scale dispersal of the Great Reed Warbler Acrocephalus arundinaceus in a fragmented landscape. Ardea 98:383–394CrossRefGoogle Scholar
  10. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225CrossRefPubMedGoogle Scholar
  11. Briggs CW, Collopy MW, Woodbridge B (2012) Correlates and fitness consequences of natal dispersal in Swainson’s Hawks. Condor 114:764–770CrossRefGoogle Scholar
  12. Carneiro APB, Jiménez JE, White TH Jr (2012) Post-fledging habitat selection by the Slender-billed Parakeet (Enicognathus leptorhynchus) in a fragmented agricultural landscape of southern Chile. Condor 114:166–172CrossRefGoogle Scholar
  13. Catchpole CK (1983) Variation in the song of the Great Reed Warbler Acrocephalus arundinaceus in relation to mate attraction and territorial defence. Anim Behav 31:1217–1225CrossRefGoogle Scholar
  14. Clarke AL, Sæther B-E, Røskaft E (1997) Sex biases in avian dispersal: a reappraisal. Oikos 79:429–438CrossRefGoogle Scholar
  15. Cox AW, Thompson FR III, Cox AS, Faaborg J (2014) Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. J Wildl Manage 78:183–193CrossRefGoogle Scholar
  16. Cresswell W (2014) Migratory connectivity of Palaearctic–African migratory birds and their responses to environmental change: the serial residency hypothesis. Ibis 156:493–510CrossRefGoogle Scholar
  17. Daan S, Dijkstra C, Drent R, Meijer T (1989) Food supply and the annual timing of avian reproduction. In: Ouellet H (eds) Proceedings of the 19th International Ornithological Congress, Ottawa, Canada. pp 392–407Google Scholar
  18. Dingemanse NJ, Both C, van Noordwijk AJ et al (2003) Natal dispersal and personalities in Great Tits (Parus major). Proc R Soc B 270:741–747CrossRefPubMedPubMedCentralGoogle Scholar
  19. Doligez B, Daniel G, Warin P et al (2012) Estimation and comparison of heritability and parent–offspring resemblance in dispersal probability from capture–recapture data using different methods: the Collared Flycatcher as a case study. J Ornithol 152:S539–S554CrossRefGoogle Scholar
  20. Ezaki Y (1990) Female choice and the causes and adaptiveness of polygyny in Great Reed Warblers. J Anim Ecol 59:103–119CrossRefGoogle Scholar
  21. Forero MG, Donázar JA, Hiraldo F (2002) Causes and fitness consequences of natal dispersal in a population of Black Kites. Ecology 83:858–872CrossRefGoogle Scholar
  22. Gienapp P, Merilä J (2011) Sex-specific fitness consequences of dispersal in Siberian Jays. Behav Ecol Sociobiol 65:131–140CrossRefGoogle Scholar
  23. Greenwood PJ, Harvey PH (1982) The natal and breeding dispersal of birds. Annu Rev Ecol Syst 13:1–21CrossRefGoogle Scholar
  24. Hansson B, Bensch S, Hasselquist D (2000a) The quality and the timing hypotheses evaluated using data on Great Reed Warblers. Oikos 90:575–581CrossRefGoogle Scholar
  25. Hansson B, Bensch S, Hasselquist D (2000b) Patterns of nest predation contribute to polygyny in the Great Reed Warbler. Ecology 81:319–328CrossRefGoogle Scholar
  26. Hansson B, Bensch S, Hasselquist D et al (2000c) Increase of genetic variation over time in a recently founded population of Great Reed Warblers (Acrocephalus arundinaceus) revealed by microsatellites and DNA fingerprinting. Mol Ecol 9:1529–1538CrossRefPubMedGoogle Scholar
  27. Hansson B, Bensch S, Hasselquist D (2002a) Predictors of natal dispersal in Great Reed Warblers: results from small and large census areas. J Avian Biol 33:310–314CrossRefGoogle Scholar
  28. Hansson B, Bensch S, Hasselquist D, Nielsen B (2002b) Restricted dispersal in a long-distance migrant bird with patchy distribution, the Great Reed Warbler. Oecologia 130:536–542CrossRefPubMedGoogle Scholar
  29. Hansson B, Bensch S, Hasselquist D (2003) A new approach to study dispersal: immigration of novel alleles reveals female-biased dispersal in Great Reed Warblers. Mol Ecol 12:631–637CrossRefPubMedGoogle Scholar
  30. Hasselquist D (1995) Demography and lifetime reproductive success in the polygynous Great Reed Warbler. Jpn J Ornithol 44:181–194CrossRefGoogle Scholar
  31. Hasselquist D (1998) Polygyny in Great Reed Warblers: a long-term study of factors contributing to male fitness. Ecology 79:2376–2390CrossRefGoogle Scholar
  32. Hasselquist D, Bensch S, von Schantz T (1996) Correlation between male song repertoire, extra-pair paternity and offspring survival in the Great Reed Warbler. Nature 381:229–232CrossRefGoogle Scholar
  33. Hobson KA, Wunder MB, Van Wilgenburg SL et al (2009) A method for investigating population declines of migratory birds using stable isotopes: origins of harvested Lesser Scaup in North America. PLoS ONE 4:e7915CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huk T, Winkel W (2006) Polygyny and its fitness consequences for primary and secondary female Pied Flycatchers. Proc R Soc B 273:1681–1688CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jelínek V, Požgayová M, Honza M, Procházka P (2016) Nest as an extended phenotype signal of female quality in the Great Reed Warbler. J Avian Biol 47:1–10CrossRefGoogle Scholar
  36. Kesler DC (2011) Non-permanent radiotelemetry leg harness for small birds. J Wildl Manage 75:467–471CrossRefGoogle Scholar
  37. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:940–950CrossRefGoogle Scholar
  38. Koleček J, Jelínek V, Požgayová M et al (2015) Breeding success and brood parasitism affect return rate and dispersal distances in the Great Reed Warbler. Behav Ecol Sociobiol 69:1845–1853CrossRefGoogle Scholar
  39. Koons DN, Rotella JJ, Willey DW et al (2006) Lesser Scaup population dynamics: what can be learned from available data? Avian Conserv Ecol 1:6CrossRefGoogle Scholar
  40. Korner-Nievergelt F, Robinson R (2015) Birdring: methods to analyse ring re-encounter data. R package version 1.3. https://CRAN.R-project.org/package=birdring
  41. Lambrechts MM, Blondel J, Caizergues A et al (1999) Will estimates of lifetime recruitment of breeding offspring on small-scale study plots help us to quantify processes underlying adaptation? Oikos 86:147–151CrossRefGoogle Scholar
  42. Low M, Pärt T, Forslund P (2007) Age-specific variation in reproduction is largely explained by the timing of territory establishment in the New Zealand Stitchbird Notiomystis cincta. J Anim Ecol 76:459–470CrossRefPubMedGoogle Scholar
  43. Matthysen E, Adriaensen F, Dhondt AA (2001) Local recruitment of Great and Blue Tits (Parus major, P. caeruleus) in relation to study plot size and degree of isolation. Ecography 24:33–42CrossRefGoogle Scholar
  44. Moreno J, Veiga JP, Romasanta M, Sanchez S (2002) Effects of maternal quality and mating status on female reproductive success in the polygynous Spotless Starling. Anim Behav 64:197–206CrossRefGoogle Scholar
  45. Morton ML, Wakamatsu MW, Pereyra ME, Morton GA (1991) Postfledging dispersal, habitat imprinting, and philopatry in a montane, migratory sparrow. Ornis Scand 22:98–106CrossRefGoogle Scholar
  46. Mukhin A (2004) Night movements of young Reed Warblers (Acrocephalus scirpaceus) in summer: is it postfledging dispersal? Auk 121:203–209CrossRefGoogle Scholar
  47. Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536CrossRefGoogle Scholar
  48. Pärt T (1994) Male philopatry confers a mating advantage in the migratory Collared Flycatcher, Ficedula albicollis. Anim Behav 48:401–409CrossRefGoogle Scholar
  49. Perrins CM (1965) Population fluctuations and clutch-size in the Great Tit, Parus major L. J Anim Ecol 34:601–647CrossRefGoogle Scholar
  50. Pinxten R, Eens M (1994) Male feeding of nestlings in the facultatively polygynous European Starling: allocation patterns and effect on female reproductive success. Behaviour 129:113–140CrossRefGoogle Scholar
  51. Potti J, Montalvo S (1991) Return rate, age at first breeding and natal dispersal of Pied Flycatchers Ficedula hypoleuca in central Spain. Ardea 79:419–428Google Scholar
  52. Požgayová M, Beňo R, Procházka P et al (2015) Lazy males and hardworking females? Sexual conflict over parental care in a brood parasite host and its consequences for chick growth. Behav Ecol Sociobiol 69:1053–1061CrossRefGoogle Scholar
  53. Procházka P, Jelínek V, Požgayová M, Honza M (2012) How to age Great Reed Warblers (Acrocephalus arundinaceus) after complete moult. Sylvia 48:57–73Google Scholar
  54. Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends Ecol Evol 11:201–206CrossRefPubMedGoogle Scholar
  55. R Core Team (2016) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org
  56. Raja-Aho S, Eeva T, Suorsa P et al (2017) Juvenile Barn Swallows Hirundo rustica from late broods start autumn migration younger, fuel less effectively and show lower return rates than juveniles from early broods. Ibis. doi:10.1111/ibi.12492 Google Scholar
  57. Redmond LJ, Murphy MT (2012) Using complementary approaches to estimate survival of juvenile and adult Eastern Kingbirds. J Field Ornithol 83:247–259CrossRefGoogle Scholar
  58. Rush SA, Stutchbury BJM (2008) Survival of fledgling Hooded Warblers (Wilsonia citrina) in small and large forest fragments. Auk 125:183–191CrossRefGoogle Scholar
  59. Saino N, Calza S, Møller AP (1997) Immunocompetence of nestling Barn Swallows in relation to brood size and parental effort. J Anim Ecol 66:827–836CrossRefGoogle Scholar
  60. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113CrossRefGoogle Scholar
  61. Suedkamp Wells KM, Ryan MR, Millspaugh JJ et al (2007) Survival of postfledging grassland birds in Missouri. Condor 109:781–794CrossRefGoogle Scholar
  62. Trnka A, Trnka M (2014) On the return rate and breeding territory fidelity in the Great Reed Warbler (Acrocephalus arundinaceus) in south-west Slovakia. Tichodroma 26:63–66Google Scholar
  63. Vadász C, Német Á, Karcza Z et al (2008) Study on breeding site fidelity of Acrocephalus warblers in central Hungary. Acta Zool Hung 54:167–175Google Scholar
  64. van Noordwijk AJ (1984) Problems in the analysis of dispersal and a critique on its ‘heritability’ in the Great Tit. J Anim Ecol 53:533–544CrossRefGoogle Scholar
  65. Verhulst S, van Balen JH, Tinbergen JM (1995) Seasonal decline in reproductive success of the Great Tit: variation in time or quality? Ecology 76:2392–2403CrossRefGoogle Scholar
  66. Vitz AC, Rodewald AD (2010) Movements of fledgling Ovenbirds (Seiurus aurocapilla) and Worm-eating Warblers (Helmitheros vermivorum) within and beyond the natal home range. Auk 127:364–371CrossRefGoogle Scholar
  67. Węgrzyn E, Leniowski K, Osiejuk TS (2010) Whistle duration and consistency reflect philopatry and harem size in Great Reed Warblers. Anim Behav 79:1363–1372CrossRefGoogle Scholar
  68. Weise CM, Meyer JR (1979) Juvenile dispersal and development of site-fidelity in the Black-capped Chickadee. Auk 96:40–55Google Scholar
  69. Wheelwright NT, Mauck RA (1998) Philopatry, natal dispersal, and inbreeding avoidance in an island population of Savannah Sparrows. Ecology 79:755–767CrossRefGoogle Scholar
  70. Whitworth D, Newman S, Mundkur T, Harris P (2007) Wild birds and avian influenza: an introduction to applied field research and disease sampling techniques. FAO Animal production and health manual, no. 5. FAO, RomeGoogle Scholar
  71. Wolff JO, Plissner JH (1998) Sex biases in avian natal dispersal: an extension of the mammalian model. Oikos 83:327–330CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i.BrnoCzech Republic
  2. 2.Department of Ecology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic

Personalised recommendations