Journal of Ornithology

, Volume 159, Issue 1, pp 29–46 | Cite as

Phylogeny and biogeography of a subclade of mangoes (Aves, Trochilidae)

  • Esther QuinteroEmail author
  • Utku Perktaş
Original Article


In this study we explore the phylogenetic relationships within the hummingbird genera Doryfera, Schistes and Colibri (Family Trochilidae), distributed in the Andes, the Pantepui, the southern Brazilian uplands and the lowlands of South America including the Chocó, the Amazon Basin, the Chaco, the Cerrado, and the southeastern Brazilian coast, as well as Central and Mesoamerica. To do this, we included a comprehensive sampling of the 16 traditionally recognized subspecies within this group. We found that Doryfera, Schistes and Colibri form a well-supported monophyletic group, and that most of the traditionally recognized subspecies are indeed evolutionary lineages. As there is a high likelihood that the ancestors of this clade of hummingbirds were distributed in the lowlands, we ask: what events might account for the diversification of this subclade of mangoes into the Andes with a later potential dispersal episode from the Andes to the lowlands? We found that several phenomena such as the uplift of the Andes, the marine transgressions of the Plio–Pleistocene, the final closure of the Isthmus of Panama and the climatic oscillations of the Pleistocene might be at least, in part, responsible for the diversification of this group in both the lowlands and the highlands of this region of South America.


Earth history Andean uplift Hummingbirds Vicariance Historical biogeography Avian diversification 


Phylogenie und Biogeografie einer Untergruppe von Mangokolibris (Aves, Trochilidae) Diese Studie untersucht die phylogenetischen Beziehungen innerhalb der Kolibrigattungen Doryfera, Schistes und Colibri (Trochilidae), deren Verbreitung sich über die Anden, den Pantepui, das südbrasilianische Hochland und das südamerikanische Tiefland einschließlich der Provinzen Choco (Kolumbien) und Chaco (Argentinien), dazu die Savannen in Zentral-Brasilien (Cerrados), das Amazonas Becken, die südöstliche Küste Brasiliens sowie über Zentral- und Mittelamerika erstreckt. In die Studie wurden in einer umfangreichen Beprobung 16 bekannte Unterarten aus der genannten Untergruppe einbezogen. Doryfera, Schistes und Colibri bilden eine monophyletische Gruppe. Die meisten der bekannten Unterarten haben eine gemeinsame evolutionäre Abstammung. Da mit hoher Wahrscheinlichkeit die Vorfahren dieser Kolibri-Gruppe im Tiefland verbreitet waren, stellt sich die Frage, welche Ereignisse für die Diversifizierung der Untergruppe der Mangokolibris in die Anden mit einer späteren potentiellen Ausbreitungsperiode von den Anden in das Tiefland verantwortlich waren. Wir fanden heraus, dass mehrere Phänomene, wie beispielsweise die Hebung der Anden, die marinen Transgressionen im Plio-Pleistozän, die endgültige Schließung der Landenge von Panama sowie die klimatischen Schwankungen im Pleistozän zumindest in Teilen verantwortlich sein könnten für die Diversifizierung dieser Gruppe in das Tiefland und in das Hochland in dieser Region in Südamerika.



We wish to thank the following individuals and institutions for providing tissues and toe pads for this study: the Academy of Natural Sciences of Philadelphia (Nate Rice), the Field Museum of Natural History (David E. Willard and John Bates), and the National Museum of Natural History (James P. Dean and Storrs L. Olson), Louisiana State University Museum of Natural Science (Donna Dittman and Robb Brumfield), and the Natural History Museum of Denmark (Jon Fjeldså). E. Q. is extremely thankful to Joel Cracraft, John Bates, Eleanor Sterling, Nancy Simmons, and A. Townsend Peterson for making valuable comments and additions to earlier versions of this manuscript, as well as to two anonymous reviewers and the subject editor who suggested improvements to this final version. This paper was part of E. Q.’s doctoral dissertation. Research funding for E. Q.’s doctoral degree was provided by Fulbright, the OAS, the GSAS at Columbia University, the American Museum of Natural History Graduate Student Fellowship Program, CONACyT (145857), and the Frank. M. Chapman Memorial Fund of the American Museum of Natural History. Research funding for U. P. was provided by a Frank M. Chapman Postdoctoral Fellowship from the American Museum Of Natural History. This paper is a contribution from the Monell Molecular Laboratory and the Cullman Research Facility of the Department of Ornithology, American Museum of Natural History, and has received generous support from the Lewis B. and Dorothy Cullman Program for Molecular Systematics Studies, a joint initiative of the New York Botanical Garden, the American Museum of Natural History, and the Sackler Institute of Comparative Genomics.

Supplementary material

10336_2017_1486_MOESM1_ESM.eps (728 kb)
Supplementary material 1 (EPS 727 kb)


  1. Almeida FC, Bonvicino CR, Cordeiro-Estrela P (2007) Phylogeny and temporal diversification of Calomys (Rodentia, Sigmodontinae): implications for the biogeography of an endemic genus of the open/dry biomes of South America. Mol Phylogenet Evol 42:449–466CrossRefPubMedGoogle Scholar
  2. Bleiweiss R (1998) Origin of hummingbird faunas. Biol J Linn Soc 65:77–97CrossRefGoogle Scholar
  3. Bleiweiss R, Kirsch JA, Matheus JC (1994) DNA–DNA hybridization evidence for subfamily structure among hummingbirds. Auk 111:8–19CrossRefGoogle Scholar
  4. Bleiweiss R, Kirsch JA, Matheus JC (1997) DNA hybridization evidence for the principal lineages of hummingbirds (Aves: Trochilidae). Mol Biol Evol 14:325–343CrossRefPubMedGoogle Scholar
  5. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10(4):e1003537. doi: 10.1371/journal.pcbi.1003537 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Braun MJ, Isler ML, Isler PR, Bates JM, Robbins MB (2005) Avian speciation in the Pantepui: the case of the Roraiman Antbird (Percnostola [Schistocichla] “leucostigmasaturata). Condor 107:327–341. doi: 10.1650/7647 CrossRefGoogle Scholar
  7. Brumfield RT, Edwards SV (2007) Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61:346–367CrossRefPubMedGoogle Scholar
  8. Burns KJ, Naoki K (2004) Molecular phylogenetics and biogeography of Neotropical tanagers in the genus Tangara. Mol Phylogenet Evol 32:838–854CrossRefPubMedGoogle Scholar
  9. Chapman FM (1917) The distribution of bird-life in Colombia: a contribution to a biological survey of South America. B Am Mus Nat Hist 36:1–728Google Scholar
  10. Chapman FM (1926) The distribution of bird-life in Ecuador: a contribution to a study of the origin of Andean bird-life. B Am Mus Nat Hist 55:1–784Google Scholar
  11. Chapman FM (1931) The upper zonal bird-life of Mts. Roraima and Duida. B Am Mus Nat Hist 63:1–135Google Scholar
  12. Chaves JA, Pollinger JP, Smith TB, LeBuhn G (2007) The role of geography and ecology in shaping the phylogeography of the Speckled Hummingbird (Adelomyia melanogenys) in Ecuador. Mol Phylogenet Evol 43:795–807CrossRefPubMedGoogle Scholar
  13. Chesser RT (2004) Systematics, evolution, and biogeography of the South American ovenbird genus Cinclodes. Auk 121:752–766CrossRefGoogle Scholar
  14. Claramunt S, Cracraft J (2015) A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci Adv 11:e1501005CrossRefGoogle Scholar
  15. Coates AG, Jackson JBC, Collins LS, Cronin TM, Dowsett HJ, Bybell LM, Jung P, Obando JA (1992) Closure of the Isthmus of Panama: the near-shore marine record of Costa Rica and western Panama. Geol Soc Am Bull 104:814–828CrossRefGoogle Scholar
  16. Cook RE (1974) Origin of the highland avifauna of southern Venezuela. Syst Zool 23:257–264CrossRefGoogle Scholar
  17. Cory CB (1918) Catalogue of birds of the Americas and adjacent islands etc. Publications of the Field Museum of Natural History (Zoological Series), ChicagoGoogle Scholar
  18. Cracraft J (1985) Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Am Ornithol Union Monogr 36:49–84CrossRefGoogle Scholar
  19. De-Silva DL, Elias M, Willmott K, Mallet J, Day JJ (2016) Diversification of clearwing butterflies with the rise of the Andes. J Biogeog 43:44–58CrossRefGoogle Scholar
  20. Dickinson E (2003) The Howard and Moore complete checklist of the birds of the world. Princeton University Press, PrincetonGoogle Scholar
  21. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedPubMedCentralGoogle Scholar
  22. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with beauty and the beast 1.7. Mol Biol Evol 29:1969–1973CrossRefPubMedPubMedCentralGoogle Scholar
  23. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefPubMedGoogle Scholar
  24. Fjeldså J (1995) Geographical patterns of neoendemic and older relict species of Andean forest birds: the significance of ecologically stable areas. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical montane forests. New York Botanical Garden Press, New York, pp 89–102Google Scholar
  25. Fjeldså J, Krabbe N (1990) Birds of the high Andes. Zoological Museum, University of Copenhagen and Apollo Books, DenmarkGoogle Scholar
  26. Fjeldså J, Rahbek C (2006) Diversification of tanagers, a species rich bird group, from lowlands to montane regions of South America. Integr Comp Biol 46:72–81CrossRefPubMedGoogle Scholar
  27. Garcia-Moreno J, Arctander P, Fjeldså J (1999) A case of rapid diversification in the Neotropics: phylogenetic relationships among Cranioleuca spinetails (Aves, Furnariidae). Mol Phylogenet Evol 12:273–281CrossRefPubMedGoogle Scholar
  28. Garzione CN, Hoke GD, Libarkin JC, Withers S, MacFadden B, Eiler J, Ghosh P, Mulch A (2008) Rise of the Andes. Science 320:1304–1307CrossRefPubMedGoogle Scholar
  29. Gerwin JA, Zink RM (1989) Phylogenetic patterns in the genus Heliodoxa (aves: Trochilidae): an allozymic perspective. Wilson Bull 101:525–544Google Scholar
  30. Gregory-Wodzicki KM (2000) Uplift histroy of the Central and Norhern Andes: a review. Geol Soc Am Bull 112:1091–1105CrossRefGoogle Scholar
  31. Haag T, Muschner VC, Freitas LB, Oliveira LFB, Langguth AR, Mattevi MS (2007) Phylogenetic relationships among species of the genus Calomys with emphasis on South American lowland taxa. J Mamm 88:769–776CrossRefGoogle Scholar
  32. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768CrossRefPubMedGoogle Scholar
  33. Haffer J (1974) Avian speciation in tropical America. Nuttall Ornithological Club, CambridgeGoogle Scholar
  34. Ho SYW, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biol 58:367–380CrossRefGoogle Scholar
  35. Hooghiemstra H, Van der Hammen T, Cleef A (2000) Evolution of forests in the northern Andes and Amazonian lowlands during the Tertiary and Quaternary. In: Guariguata M (ed) Ecology of Neotropical rainforests. Wageningen University, The NetherlandsGoogle Scholar
  36. Hooghiemstra H, Wijninga VM, Cleef AM (2006) The paleobotanical record of Colombia: implications for biogeography and biodiversity. Ann Mo Bot Gard 93:297–324CrossRefGoogle Scholar
  37. Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23:237–240CrossRefGoogle Scholar
  38. Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931CrossRefPubMedGoogle Scholar
  39. Huber O (1988) Guayana highlands versus Guayana lowlands, a reappraisal. Taxon 37:595–614CrossRefGoogle Scholar
  40. Huelsenbeck JP, Ronquist F (2001) MrBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  41. Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. P Natl Acad Sci USA 103:10334–10339CrossRefGoogle Scholar
  42. Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kennan L, Lamb SH, Hoke L (1997) High-altitude palaeosurfaces in the Bolivian Andes: evidence for late Cenozoic surface uplift. In: Widdowson M (ed) Palaeosurfaces: recognition, reconstruction and palaeoenvironmental interpretation, vol 120. Geological Society Special Publication, London, pp 307–323Google Scholar
  44. Kieswetter CM, Schneide CJ (2013) Phylogeography in the northern Andes: complex history and cryptic diversity in a cloud forest frog, Pristimantis w-nigrum (Craugastoridae). Mol Phylogenet Evol 69:417–429CrossRefPubMedGoogle Scholar
  45. Lamb S, Hoke L (1997) Origin of the high plateau in the Central Andes, Bolivia, South America. Tectonics 16:623–649CrossRefGoogle Scholar
  46. Lutz HL, Weckstein JD, Patané JS, Bates JM, Aleixo A (2013) Biogeography and spatio-temporal diversification of Selenidera and Andigena Toucans (Aves: Ramphastidae). Mol Phylogenet Evol 69:873–883CrossRefPubMedGoogle Scholar
  47. Mauck WMIII, Burns KJ (2009) Phylogeny, biogeography, and recurrent evolution of divergent bill types in the nectar-stealing flowerpiercers (Thraupini: Diglossa and Diglossopis). Biol J Linn Soc 98:14–28CrossRefGoogle Scholar
  48. Mayr E, Phelps WEJ (1967) The origin of the bird fauna of the south Venezuelan highlands. B Am Mus Nat Hist 136:269–328Google Scholar
  49. McGuire JA, Witt CC, Altshuler DL, Remsen JV (2007) Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst Biol 56:837–856CrossRefPubMedGoogle Scholar
  50. McGuire JA, Witt CC, Remsen JV, Dudley R, Altshuler DL (2008) A higher-level taxonomy for hummingbirds. J Ornithol 150:155–165CrossRefGoogle Scholar
  51. McGuire JA, Witt CC, Remsen JV, Corl A, Rabosky DL, Altshuler DL, Dudley R (2014) Molecular phylogenetics and the diversification of hummingbirds. Curr Biol 24:1038CrossRefGoogle Scholar
  52. Meyer De Schauensee R (1970) A guide to the birds of South America. Livingston, WynnwoodGoogle Scholar
  53. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010, New Orleans, pp 1–8Google Scholar
  54. Nores M (2000) Species richness in the Amazonian bird fauna from an evolutionary perspective. Emu 100:419–430CrossRefGoogle Scholar
  55. Nores M (2004) The implications of Tertiary and Quaternary sea level rise events for avian distribution patterns in the lowlands of northern South America. Global Ecol Biogeogr 13:149–161CrossRefGoogle Scholar
  56. Nylander JAA (2004) MrModeltest v2.3 (Program distributed by the author). Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  57. O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL et al (2016) Formation of the Isthmus of Panama. Sci Adv 2:e1600883CrossRefPubMedPubMedCentralGoogle Scholar
  58. Perktas U, Quintero E (2013) A wide geographical survey of mitochondrial DNA variation in the Great Spotted Woodpecker complex, Dendrocopos major (Aves: Picidae). Biol J Linn Soc 108:173–188CrossRefGoogle Scholar
  59. Perktas U, Barrowclough GF, Groth JG (2011) Phylogeography and species limits in the Green Woodpecker complex (Aves: Picidae): multiple Pleistocene refugia and range expansion across Europe and the Near East. Biol J Linn Soc 104:710–723CrossRefGoogle Scholar
  60. Perktas U, Peterson AT, Dyer D (2017) Integrating morphology, phylogeography, and ecological niche modeling to explore population differentiation in North African Common Chaffinches. J Ornithol 158:1–13CrossRefGoogle Scholar
  61. Peters JL (1945) Check-list of birds of the world. Museum of Comparative Zoology, Harvard University, CambridgeGoogle Scholar
  62. Phelps WH, Phelps WHJ (1952) Nine new subspecies of birds from Venezuela. Proc Biol Soc Wash 65:39–54Google Scholar
  63. Quintero E, Ribas CC, Cracraft J (2013) The Andean Hapalopsittaca parrots (Psittacidae, Aves): an example of montane-tropical lowland vicariance. Zool Scr 42:28–43CrossRefGoogle Scholar
  64. Ribas CC, Gaban-Lima R, Miyaki CY, Cracraft J (2005) Historical biogeography and diversification within the Neotropical parrot genus Pionopsitta (Aves: Psittacidae). J Biogeog 32:1409–1427CrossRefGoogle Scholar
  65. Ribas CC, Moyle RG, Miyaki CY, Cracraft J (2007) Deciphering the origins of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrot. P R Soc B 274:2399–2408CrossRefGoogle Scholar
  66. Rull V (2004) An evaluation of the lost world and vertical displacement hypotheses in the Chimantá Massif, Venezuelan Guayana. Global Ecol Biogeogr 13:141–148CrossRefGoogle Scholar
  67. Rull V (2005) Biotic diversification in the Guayana highlands: a proposal. J Biogeog 32:921–927CrossRefGoogle Scholar
  68. Ruschi A (1963) A atual distiribucao geografica das especies e sub-especies do genero Augastes, como a descricao des uma nova sub-especie: Augastes scutatus soaresis ruschi, e a chave artificial e analitica para o reconhecimiento das mesmas. Boletim do Museu de Biologia Mello Leitao (Serie Divulgacao), pp 1–4Google Scholar
  69. Salerno PE, Ron SR, Señaris JC, Rojas-Runjaic FJM, Noonan BP, Cannatella DC (2012) Ancient tepui summits harbor young rather than old lineages of endemic frogs. Evolution 66:3000–3013CrossRefPubMedGoogle Scholar
  70. Schuchmann KL (1999) Family Trochilidae (hummingbirds). In: Del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world. Barn Owls to hummingbirds, vol 5. Lynx, Barcelona, pp 468–535Google Scholar
  71. Sikes DS, Lewis PO (2001) Beta software, version 1. PAUPRat: PAUP* implementation of the parsimony ratchet. Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, USA. (Program distributed by the authors)Google Scholar
  72. Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Brumfield RT (2014) The drivers of tropical speciation. Nature 515:406–409. doi: 10.1038/nature13687 (Letter) CrossRefPubMedGoogle Scholar
  73. Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114CrossRefPubMedGoogle Scholar
  74. Swofford DL (2002) PAUP: phylogenetic analysis using parsimony (and other methods). Version 4.0b10. Sinauer, SunderlandGoogle Scholar
  75. Terborgh J (1971) Distribution on environmental gradients: theory and a preliminary interpretation of distributional patterns in the avifauna of the Cordillera Vilcabamba, Peru. Ecology 52:23–40CrossRefGoogle Scholar
  76. Torres-Carvajal O (2007) Phylogeny and biogeography of a large radiation of Andean lizards (Iguania, Stenocercus). Zool Scr 36:311–326CrossRefGoogle Scholar
  77. van der Hammen T, Cleef AM (1986) Development of the high Andean Paramo flora and vegetation. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York, pp 153–201Google Scholar
  78. Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328CrossRefPubMedGoogle Scholar
  79. Winger BM, Hosner PA, Bravo GA, Cuervo AM, Aristizábal N, Cueto LE, Bates JM (2015) Inferring speciation history in the Andes with reduced-representation sequence data: an example in the Bay-backed Antpittas (Aves; Grallariidae; Grallaria hypoleuca s.l.). Mol Ecol 24:6256–6277CrossRefPubMedGoogle Scholar
  80. Winterton C, Richardson JE, Hollingsworth M, Clark A, Zamora N, Pennington RT (2014) Historical biogeography of the Neotropical legume genus Dussia: the Andes, the Panama Isthmus and the Chocó. Paleobotany and biogeography: a festschrift for Alan Graham in his 80th year. Missouri Botanical Garden Press, St. Louis, pp 389–404Google Scholar
  81. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation, University of Texas at AustinGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Department of OrnithologyAmerican Museum of Natural HistoryNew YorkUSA
  2. 2.Subcoordinación de Especies PrioritariasComisión Nacional Para el Conocimiento y Uso de la BiodiversidadTlalpanMexico
  3. 3.Department of Biology (Zoology Section Biogeography Research Lab.), Faculty of ScienceHacettepe UniversityAnkaraTurkey

Personalised recommendations