Advertisement

Journal of Ornithology

, Volume 159, Issue 1, pp 165–171 | Cite as

The trade-off between rapid feather growth and impaired feather quality increases risk of predation

  • A. P. MøllerEmail author
  • J. T. Nielsen
Original Article

Abstract

Feathers are used for flight, and any damage to feathers impairs efficient escape from predators. Because individuals can either rapidly produce feathers of poor quality or slowly produce feathers of high quality, prey experience a trade-off between speed of molt, quality of feathers, and risk of predation. We analyzed feathers produced by Woodpigeon Columba palumbus prey captured by Goshawks Accipiter gentilis and compared those to feathers shed during molt in the same areas. Feathers that were produced rapidly as reflected by long daily growth increments suffered from a greater degree of feather wear than feathers that were produced slowly. Prey had longer daily growth increments and a shorter period of molt than non-prey. Woodpigeons with worn feathers were more likely to fall prey to Goshawks than those with little or no wear to the plumage. These effects were independent of age, year, and time during the breeding season. These findings are consistent with a trade-off between speed of molt and feather quality affecting predation risk.

Keywords

Accipiter gentilis Columba palumbus Feather quality Goshawk Predation Growth rate Woodpigeon 

Zusammenfassung

Der Kompromiss zwischen schnellem Federwachstum und verminderter Federqualität erhöht das Prädationsrisiko.

Federn dienen dem Flug und jegliche Federschäden beeinträchtigen eine erfolgreiche Flucht vor Prädatoren. Da Individuen entweder schnell Federn minderer Qualität oder langsam Federn höherer Qualität bilden können, unterliegen Beutevögel einer Gratwanderung zwischen Mausergeschwindigkeit, Federqualität und Prädationsrisiko. Wir analysierten Federn von durch Habichte Accipiter gentilis erbeuteten Ringeltauben Columba palumbus und verglichen diese mit Mauserfedern aus denselben Gebieten. Schnell gewachsene Federn, erkennbar an breiten täglichen Wachstumsstreifen, unterlagen einem stärkeren Abnutzungsgrad als Federn, die langsam gewachsen waren. Erbeutete Vögel hatten breitere tägliche Wachstumsstreifen und einen kürzeren Mauserzeitraum als nicht erbeutete Vögel. Ringeltauben mit abgenutzten Federn wurden mit größerer Wahrscheinlichkeit von Habichten erbeutet als solche mit wenig oder keiner Gefiederabnutzung. Diese Effekte traten unabhängig von Alter, Jahr und Brutzeitabschnitt auf. Diese Befunde stehen im Einklang mit einem Kompromiss zwischen Mausergeschwindigkeit und Federqualität, welcher das Prädationsrisiko beeinflusst.

Notes

Acknowledgements

We thank the landowners for access to the study sites. J. M. Neto, W. Cresswell and two anonymous referees provided constructive criticism.

References

  1. Becker WA (1984) Manual of quantitative genetics. Academic Enterprises, PullmanGoogle Scholar
  2. Bensch S, Grahn M (1993) A new method for estimating individual speed of molt. Condor 95:305–315CrossRefGoogle Scholar
  3. Cramp S, Perrins CM (eds) (1985) The birds of the Western Palearctic, vol 4. Oxford University Press, OxfordGoogle Scholar
  4. Crick HQP, Gibbons DW, Magrath RD (1993) Seasonal changes in clutch size in British birds. J Anim Ecol 62:263–273CrossRefGoogle Scholar
  5. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B 205:489–511CrossRefPubMedGoogle Scholar
  6. Dawson A (2004) The effects of delaying the start of moult on the duration of moult, primary feather growth rates and feather mass in Common Starlings Sturnus vulgaris. Ibis 146:493–500CrossRefGoogle Scholar
  7. Dawson A, Hinsley SA, Ferns PN, Bonser RHC, Eccleston L (2000) Rate of moult affects feather quality: a mechanism linking current reproductive effort to future survival. Proc R Soc Lond B 267:2093–2098CrossRefGoogle Scholar
  8. de la Hera I, Schaper SV, Díaz JA, Pérez-Tris J, Bensch S, Tellería JL (2011) How much variation in the molt duration of passerines can be explained by the growth rate of tail feathers? Auk 128:321–329CrossRefGoogle Scholar
  9. Falconer DS, Mackay TFC (1996) Introduction to Quantitative Genetics, 4th edn. Longman, New YorkGoogle Scholar
  10. Ginn HB, Melville DS (1983) Moult in birds. British Trust for Ornithology, TringGoogle Scholar
  11. Grubb TC Jr (1991) A deficient diet narrows growth bars on induced feathers. Auk 108:725–727CrossRefGoogle Scholar
  12. Grubb TC Jr (2006) Ptilochronology. Oxford University Press, New YorkGoogle Scholar
  13. Grubb TC Jr, Yosef R (1992) Territory size influences nutritional condition in nonbreeding Loggerhead Shrikes (Lanius ludovicianus): a ptilochronology approach. Cons Biol 6:447–449CrossRefGoogle Scholar
  14. Grubb TC Jr, Yosef R (1994) Habitat-specific nutritional condition in Loggerhead Shrikes (Lanius ludovicianus): evidence from ptilochronology. Auk 111:756–759CrossRefGoogle Scholar
  15. Grubb TC Jr, Waite TA, Wiseman AJ (1991) Ptilochronology: induced feather growth in Northern Cardinals varies with age, sex, ambient temperature, and day length. Wilson Bull 103:435–445Google Scholar
  16. Hall KSS, Fransson T (2000) Lesser Whitethroats under time-constraint moult more rapidly and grow shorter wing feathers. J Avian Biol 31:583–587CrossRefGoogle Scholar
  17. Haukioja E (1971) Flightlessness in some moulting passerines in Northern Europe. Ornis Fenn 48:101–116Google Scholar
  18. Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic, LondonGoogle Scholar
  19. Kenward R (2006) The goshawk. Poyser, LondonGoogle Scholar
  20. Lustick S (1970) Energy requirements of molt in cowbirds. Auk 87:742–746CrossRefGoogle Scholar
  21. Mauck RA, Grubb TC Jr (1995) Petrel parents shunt all experimentally increased reproductive costs to their offspring. Anim Behav 49:999–1008CrossRefGoogle Scholar
  22. Møller AP, Nielsen JT (2007) Malaria and risk of predation: a comparative study of birds. Ecology 88:871–881CrossRefPubMedGoogle Scholar
  23. Møller AP, Couderc G, Nielsen JT (2009) Viability selection on prey morphology by a generalist predator. J Evol Biol 22:1234–1241CrossRefPubMedGoogle Scholar
  24. Møller AP, Flensted-Jensen E, Klarborg K, Mardal W, Nielsen JT (2010) Climate change affects the duration of the reproductive season in birds. J Anim Ecol 79:777–784PubMedGoogle Scholar
  25. Møller AP, Peralta-Sánchez JM, Nielsen JT, López-Hernández E, Soler JJ (2012a) Goshawk prey have more bacteria than non-prey. J Anim Ecol 81:403–410CrossRefPubMedGoogle Scholar
  26. Møller AP, Solonen T, Byholm P, Huhta E, Nielsen JT, Tornberg R (2012b) Spatial consistency in susceptibility of prey species to predation by two Accipiter hawks. J Avian Biol 43:390–396CrossRefGoogle Scholar
  27. Payne RB (1972) Mechanism and control of molt. In: Farner DS, King JR (eds) Avian biology, vol 2. Academic. London, UK, pp 103–155CrossRefGoogle Scholar
  28. Pennycuick CJ (1975) Mechanics of flight. In: Farner DS, King R (eds) Avian biology, vol 5. Academic. London, UK, pp 1–75Google Scholar
  29. Pennycuick CJ (2008) Modelling the flying bird. Academic, LondonGoogle Scholar
  30. Perrins CM (1965) Population fluctuations and clutch-size in the Great Tit, Parus major. J Anim Ecol 34:601–647CrossRefGoogle Scholar
  31. Saino N, Romano M, Caprioli M, Ambrosini R, Rubolini D et al (2012) A ptilochronological study of carry-over effects of conditions during wintering on breeding performance in the barn swallow. J Avian Biol 43:513–524CrossRefGoogle Scholar
  32. Saino N, Romano M, Caprioli M, Lardelli R, Micheloni P, Scandolara C, Rubolini D, Fasola M (2013) Molt, feather growth rate and body condition of male and female Barn Swallows. J Ornithol 154:537–547CrossRefGoogle Scholar
  33. Saino N, Romano M, Rubolini D, Ambrosini R, Romano A, Caprioli M, Costanzo A, Bazzi G (2014) A trade-off between reproduction and feather growth in the Barn Swallow (Hirundo rustica). PLoS ONE 9(5):e96428CrossRefPubMedPubMedCentralGoogle Scholar
  34. SAS (2012) JMP version 10.2. SAS Institute, Inc, CaryGoogle Scholar
  35. Serra L (2001) Duration of primary moult affects primary quality in Grey Plovers Pluvialis squatarola. J Avian Biol 32:377–380CrossRefGoogle Scholar
  36. Stresemann E, Stresemann V (1966) Die Mauser der Vögel. J Ornithol Sonderheft 106:1–445Google Scholar
  37. Takaki Y, Eguchi K, Nagata H (2001) The growth bars on tail feathers in the male Styan’s Grasshopper warbler may indicate quality. J Avian Biol 32:319–325CrossRefGoogle Scholar
  38. Vágási CI, Pap PL, Vincze O, Benkő Z, Marton A, Barta Z (2012) Haste makes waste but condition matters: molt rate–feather quality trade-off in a sedentary songbird. PLoS One 7:e40651CrossRefPubMedPubMedCentralGoogle Scholar
  39. Waite TA (1990) Effect of caching supplemental food on induced feather regeneration in wintering Gray Jays Perisoreus canadensis: a ptilochronology study. Ornis Scand 21:122–128CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Ecologie Systématique Evolution, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-SaclayOrsay CedexFrance
  2. 2.SindalDenmark

Personalised recommendations