Journal of Ornithology

, Volume 158, Issue 4, pp 1001–1012 | Cite as

Nocturnal, diurnal and bimodal patterns of locomotion, sibling interactions and sleep in nestling Barn Owls

  • Madeleine F. Scriba
  • Amélie N. Dreiss
  • Isabelle Henry
  • Paul Béziers
  • Charlène Ruppli
  • Estelle Ifrid
  • Pauline Ducouret
  • Arnaud Da Silva
  • Baudouin des Monstiers
  • Alexei L. Vyssotski
  • Niels C. Rattenborg
  • Alexandre Roulin
Original Article

Abstract

Temporal variation in physical activity is mainly determined by the day–night cycle. While this may be true for diurnal species whose vision at night is often poor, the situation might be more complex in nocturnal animals as many such species can see both in the dark and in the daylight. We examined in Barn Owl (Tyto alba) nestlings whether temporal variation of behavioural activities and sleep is shaped by parental feeding visits occurring during the first part of the night and the extent to which they also occur during daylight hours. We measured several behaviours in 280 individuals from 90 broods recorded in 4 years. Parental feeding visits progressively declined in frequency from the beginning to the end of the night, and a number of offspring behaviours followed the same pattern of activity (feeding, vocalization and self-preening). Surprisingly, nestlings were awake not only at sunset, but also at sunrise. Several behaviours (locomotion, wing flapping and sibling interactions, such as pecking and allopreening among nestlings) showed peaks of activity at sunset and sunrise, suggesting that they were performed for other reasons than to interact with parents. Allopreening was performed more often during the day than at night. We conclude that although adult Barn Owls are nocturnal, nestlings display a complex temporal pattern of activity that is governed not only by feeding but also by other unknown factors.

Keywords

Barn Owl Behaviour Bimodality Diel organization Ontogeny Sleep 

Zusammenfassung

Nächtliche, tägliche und bimodale Muster der Lokomotion, der Interaktionen mit Geschwistern und des Schlafs bei Schleiereulennestlingen

Der zeitliche Verlauf der körperlichen Aktivität wird hauptsächlich vom Tag-Nacht-Rhythmus bestimmt. Besonders tagaktive Arten sind oft nicht in der Lage nachts zu sehen, während nachtaktive Arten sowohl am Tag als auch nachts sehen können. Wir untersuchten an Schleiereulennestlingen (Tyto alba), ob zeitliche Variation von Verhalten und Gehirnaktivität von den elterlichen Besuchen in der ersten Hälfte der Nacht abhängen und ob Aktivitäten während des Tages ausgeführt werden. Wir bestimmten Verhaltensweisen von 280 Individuen aus 90 Bruten über vier Jahre. Elterliche Fütterungsbesuche nahmen über die Nacht stetig in der Frequenz ab, und einige der Verhaltensweisen der Nestlinge folgten diesem Muster (Fressen, Rufen und Putzen). Erstaunlicherweise waren Nestlinge nicht nur bei Sonnenuntergang wach, sondern auch bei Sonnenaufgang. Einige Verhaltensweisen (Lokomotion, Flügel schlagen und Interaktionen mit Geschwistern wie Picken und gegenseitiges Putzen) zeigten hohe Aktivität bei Sonnenuntergang und –aufgang, was darauf hindeutet, dass sie aus anderen Gründen ausgeführt wurden als mit den Eltern zu interagieren. Gegenseitiges Putzen wurde tagsüber öfter durchgeführt als nachts. Zusammenfassend ist zu sagen, dass Schleiereulen zwar nachtaktiv sind, Nestlinge aber ein komplexes Aktivitätsmuster zeigen, das durch die elterliche Fütterung vorgegeben ist, aber auch durch weitere, noch unbekannte Faktoren bestimmt ist.

Supplementary material

10336_2017_1458_MOESM1_ESM.docx (75 kb)
Supplementary Fig. 1 Sleep-wakefulness in the field in relation to sunrise and sunset in Barn Owl nestlings. Mean hourly standardized values (± SE) are given in relation to sunrise and sunset as indicated by 0 (i.e. up to 4 hours before and 4 hours after these time points, respectively). Shaded area Dark period. Proportion of time spent awake (filled triangles), in non-REM sleep (open circles) and in REM sleep (open squares) in 29 broods in 2011 is shown. (DOCX 74 kb)

References

  1. Almasi B, Béziers P, Roulin A, Jenni L (2015) Agricultural land-use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings. Oecologia 179(1):89–101CrossRefPubMedGoogle Scholar
  2. Anisimov VN, Herbst JA, Abramchuk AN, Latanov AV, Hahnloser RH, Vyssotski AL (2014) Reconstruction of vocal interactions in a group of small songbirds. Nat Methods 11(11):1135–1137CrossRefPubMedGoogle Scholar
  3. Boydston EE, Morelli TL, Holekamp KE (2001) Sex differences in territorial behavior exhibited by the spotted hyena (Hyaenidae, Crocuta crocuta). Ethol 107(5):369–385CrossRefGoogle Scholar
  4. Core Team R (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  5. Daan S, Spoelstra K, Albrecht U, Schmutz I, Daan M, Daan B, Riensk F, Poletaeva I, Dell’Omo G, Vyssotski A, Lipp H-P (2011) Lab mice in the field: unexpected activity patterns and effects of a dysfunctional mPer2 allele. J Biol Rhythms 26(2):118–129. doi:10.1177/0748730410397645 CrossRefPubMedGoogle Scholar
  6. Dreiss AN, Henry I, Ruppli CA, Almasi B, Roulin A (2010) Darker eumelanic barn owls better withstand food depletion through resistance to food deprivation and lower appetite. Oecologia 164:65–71CrossRefPubMedGoogle Scholar
  7. Dreiss AN, Calcagno M, Van den Brink V, Laurent A, Almasi B, Jenni L, Roulin A (2013a) The vigilance components of begging and sibling competition. J Avian Biol 44(4):359–368CrossRefGoogle Scholar
  8. Dreiss AN, Ruppli CA, Oberli F, Antoniazza S, Henry I, Roulin A (2013b) Barn owls do not interrupt their siblings. Anim Behav 86:119–126CrossRefGoogle Scholar
  9. Dreiss AN, Ruppli CA, Faller C, Roulin A (2015) Social rules govern vocal competition in the barn owl. Anim Behav 102:95–107CrossRefGoogle Scholar
  10. Dreiss AN, Gaime F, Delarbre A, Moroni L, Lenarth M, Roulin A (2016a) Vocal communication regulates sibling competition over food stock. Behav Ecol Sociobiol 70:927–937CrossRefGoogle Scholar
  11. Dreiss AN, Séchaud R, Béziers P, Villain N, Genoud M, Almasi B, Jenni L, Roulin A (2016b) Social huddling and physiological thermoregulation are related to melanism in the nocturnal barn owl. Oecologia 180(2):371–381CrossRefPubMedGoogle Scholar
  12. Elvert R, Kronfeld N, Dayan T, Haim A, Zisapel N, Heldmaier G (1999) Telemetric field studies of body temperature and activity rhythms of Acomys russatus and A. cahirinus in the Judean Desert of Israel. Oecologia 119(4):484–492CrossRefPubMedGoogle Scholar
  13. Erkert HG (1969) Die Bedeutung des Lichtsinnes für Aktivität und Raumorientierung der Schleiereule (Tyto alba guttata Brehm). Z Vergl Physiol 64(1):37–70CrossRefGoogle Scholar
  14. Erkert HG, Kappeler PM (2004) Arrived in the light: diel and seasonal activity patterns in wild Verreaux’s sifakas (Propithecus v. verreauxi; Primates: Indriidae). Behav Ecol Sociobiol 57(2):174–186CrossRefGoogle Scholar
  15. Formanek L, Richard-Yris MA, Houdelier C, Lumineau S (2011) Rhythmic birds show a better social integration than arrhythmic birds. Chronobiol Internat 28(1):48–57CrossRefGoogle Scholar
  16. Fraser ON, Bugnyar T (2011) Ravens reconcile after aggressive conflicts with valuable partners. PLoS One 6(3):e18118. doi:10.1371/journal.pone.0018118 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fraser ON, Stahl D, Aureli F (2008) Stress reduction through consolation in chimpanzees. Proc Nat Acad Sci USA105(25):8557–8562CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hall MI (2008) Comparative analysis of the size and shape of the lizard eye. J Zool 111:62–75. doi:10.1016/j.zool.2007.04.003 CrossRefGoogle Scholar
  19. Hall MI, Ross CF (2007) Eye shape and activity pattern in birds. J Zool 271:437–444. doi:10.1111/j.1469-7998.2006.00227.x CrossRefGoogle Scholar
  20. Hoogenboom I, Daan S, Dallinga H, Schoenmakers M (1984) Seasonal change in daily timing of behaviour in the common vole Microtus arvalis. Oecologia 61:18–31CrossRefPubMedGoogle Scholar
  21. Hut RA, Beersma DG (2011) Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod. Phil Trans R Soc B 366(1574):2141–2154CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kouba M, Bartoš L, Zárybnická M (2014) Perching of Tengmalm’s Owl (Aegolius funereus) nestlings at the nest box entrance: effect of time of the day, age, wing length and body weight. PLoS One 9(5):e97504. doi:10.1371/journal.pone.0097504 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Levy O, Dayan T, Kronfeld-Schor N (2007) The relationship between the golden spiny mouse circadian system and its diurnal activity: an experimental field enclosures and laboratory study. Chronobiol Int 24:599–613CrossRefPubMedGoogle Scholar
  24. Lewis S, Roberts G, Harris MP, Prigmore C, Wanless S (2007) Fitness increases with partner and neighbour allopreening. Biol Lett 3(4):386–389CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maechler M (2012) Diptest: Hartigan’s dip test statistic for unimodality—corrected code. R package version 0.75-74. http://CRAN.R-project.org/package=diptest. Accessed 24 Sept 2016
  26. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, Wright KP (2013) Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Nat Acad Sci USA 110(14):5695–5700CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mrosovsky N (1999) Further experiments on the relationship between the period of circadian rhythms and locomotor activity levels in hamsters. Physiol Behav 66(5):797–801CrossRefPubMedGoogle Scholar
  28. Opp MR, Krueger JM (2015) Sleep and immunity: a growing field with clinical impact. Brain Behav Immun 47:1CrossRefPubMedPubMedCentralGoogle Scholar
  29. Payne NL, van der Meulen DE, Gannon R, Semmens JM, Suthers IM, Gray CA, Taylor MD (2012) Rain reverses diel activity rhythms in an estuarine teleost. Proc R Soc B 280:20122363. doi:10.1098/rspb.2012.2363 CrossRefGoogle Scholar
  30. Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93(2):681–766CrossRefPubMedPubMedCentralGoogle Scholar
  31. Rattenborg NC, Martinez-Gonzalez D, Roth TC 2nd, Pravosudov VV (2011) Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biol Rev 86:658–691CrossRefPubMedGoogle Scholar
  32. Roffwarg HP, Muzio JN, Dement WC (1966) Ontogenetic development of the human sleep-dream cycle. Science 152:604–619CrossRefPubMedGoogle Scholar
  33. Roulin A (2001) Food supply differentially affects sibling negotiation and competition in the barn owl (Tyto alba). Behav Ecol Sociobiol 49:514–519CrossRefGoogle Scholar
  34. Roulin A (2004) The function of food stores in bird nests: observations and experiments in the Barn Owl Tyto alba. Ardea 92:69–78Google Scholar
  35. Roulin A, Des Monstiers B, Ifrid E, Da Silva A, Genzoni E, Dreiss AN (2016) Reciprocal preening and food sharing in colour-polymorphic nestling Barn Owls. J Evol Biol 29:380–394CrossRefPubMedGoogle Scholar
  36. Scriba MF, Ducrest AL, Henry I, Vyssotski AL, Rattenborg NC, Roulin A (2013a) Linking melanism to brain development: expression of a melanism-related gene in barn owl feather follicles covaries with sleep ontogeny. Front Zool 10:42. doi:10.1186/1742-9994-10-42 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Scriba MF, Harmening WM, Mettke-Hofmann C, Vyssotski AL, Roulin A, Wagner H, Rattenborg NC (2013b) Evaluation of two minimally invasive techniques for electroencephalogram recording in wild or freely behaving animals. J Comp Physiol A 199(3):183–189. doi:10.1007/s00359-012-0779-1 CrossRefGoogle Scholar
  38. Scriba MF, Rattenborg NC, Dreiss A, Vyssotski AL, Roulin A (2014) Sleep and vigilance linked to melanism in wild Barn Owls. J Evol Biol 27(10):2057–2068. doi:10.1111/jeb.12450 CrossRefPubMedGoogle Scholar
  39. Smith CR, Richmond ME (1972) Factors influencing pellet egestion and gastric pH in the Barn Owl. Wilson Bull 84(2):179–186Google Scholar
  40. Vallone D, Lahiri K, Dickmeis T, Foulkes NS (2007) Start the clock! Circadian rhythms and development. Dev Dynam 236(1):142–155. doi:10.1002/dvdy.20998 CrossRefGoogle Scholar
  41. Van Dongen HP, Maislin G, Mullington JM, Dinges DF (2003) The cumulative cost of additional wakefulness: dose–response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26:117–126CrossRefPubMedGoogle Scholar
  42. Vasquez RA (1996) Patch utilization by three species of Chilean rodents differing in body size and mode of locomotion. Ecol 77(8):2343–2351CrossRefGoogle Scholar
  43. Voirin B, Scriba MF, Martinez-Gonzalez D, Vyssotski AL, Wikelski M, Rattenborg NC (2014) Ecology and neurophysiology of sleep in two wild sloth species. Sleep 37(4):753. doi:10.5665/sleep.3584 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11:200–208CrossRefPubMedGoogle Scholar
  45. Vyssotski AL, Dell’Omo G, Dell’Ariccia G, Abramchuk AN, Serkov AN, Latanov AV, Loizzo A, Wolfer DP, Lipp HP (2009) EEG responses to visual landmarks in flying pigeons. Curr Biol 19(14):1159–1166CrossRefPubMedGoogle Scholar
  46. Wright J, Markman S, Denney SM (2006) Facultative adjustment of pre-fledging mass loss by nestling swifts preparing for flight. Proc R Soc B 273:1895–1900. doi:10.1098/rspb.2006.3533 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377CrossRefPubMedGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  • Madeleine F. Scriba
    • 1
    • 2
  • Amélie N. Dreiss
    • 1
  • Isabelle Henry
    • 1
  • Paul Béziers
    • 1
  • Charlène Ruppli
    • 1
  • Estelle Ifrid
    • 1
  • Pauline Ducouret
    • 1
  • Arnaud Da Silva
    • 1
    • 3
  • Baudouin des Monstiers
    • 1
  • Alexei L. Vyssotski
    • 4
  • Niels C. Rattenborg
    • 2
  • Alexandre Roulin
    • 1
  1. 1.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
  2. 2.Avian Sleep GroupMax Planck Institute for OrnithologySeewiesenGermany
  3. 3.Behavioural Ecology and Evolutionary GeneticsMax-Planck Institute for OrnithologySeewiesenGermany
  4. 4.Institute of NeuroinformaticsUniversity of Zürich and ETH ZürichZürichSwitzerland

Personalised recommendations