Advertisement

Journal of Ornithology

, Volume 158, Issue 3, pp 841–850 | Cite as

Agricultural land use shapes habitat selection, foraging and reproductive success of the Lesser Spotted Eagle Clanga pomarina

  • Ülo VäliEmail author
  • Joosep Tuvi
  • Gunnar Sein
Original Article

Abstract

Anthropogenic loss of biodiversity is often indicated by the disappearance of top predators. However, some of them have adapted to man-made agricultural landscapes. Among raptors, one such example is the Lesser Spotted Eagle. We compiled an exhaustive data set on foraging habitat composition of this species by direct field mapping and detailed land cover maps to study the effect of various agricultural management practices on its occupancy of home ranges and productivity, as well as on its habitat utilization and hunting success. Home ranges of the Lesser Spotted Eagle contained more natural grasslands (7.6%) and other agricultural biotopes (29.9%) than expected by random, and they preferred to breed close to managed agricultural biotopes. They hunted preferably on grasslands, where they spent 86% of their time, especially on managed grasslands, but avoided arable fields. In total, 51% of the Lesser Spotted Eagle attacks were successful, and we detected no differences in hunting success among habitats. Nests of successfully breeding birds were surrounded by more crops/cultivated grassland on a rotational basis (19.0%), as well as by managed natural grassland (1.1%), than those of unsuccessful pairs (16 and 0.7%, respectively). We also detected a negative impact of oilseed rape fields and mowed cultivated grassland on the reproductive success of the Lesser Spotted Eagle, but these effects were not consistent over the years. Our results suggest that, although the Lesser Spotted Eagle is well adapted to foraging in traditional farmland, it is threatened by changes in agricultural practices and an increasing sown area of some crops, such as oilseed rape. Cultivation of various crops and retaining of grasslands, interspersed with set-aside and non-agricultural habitat patches, promoted by the European Union greening policy, would be favourable to the Lesser Spotted Eagle.

Keywords

Conservation Foraging Grassland Habitat Raptor Sustainable agriculture 

Zusammenfassung

Die landwirtschaftliche Nutzung beeinflusst Habitatwahl, Nahrungssuche und Fortpflanzungserfolg von Schreiadlern Clanga pomarina Der anthropogene Artenverlust zeigt sich oftmals im Verschwinden von Spitzenprädatoren. Einige dieser Spitzenprädatoren haben sich jedoch an die künstliche Agrarlandschaft angepasst. Bei den Greifvögeln ist der Schreiadler ein solches Beispiel. Wir haben mit Hilfe direkter Feldkartierung und detaillierten Landbedeckungskarten einen umfassenden Datensatz zur Beschaffenheit des Nahrungshabitats dieser Art zusammengestellt, um den Effekt verschiedener Agrarmanagementmethoden auf die Besetzung von Aktionsräumen und die Produktivität des Adlers, sowie seine Habitatnutzung und seinen Jagderfolg zu untersuchen. Die Aktionsräume der Adler enthielten mehr natürliches Grünland (7,6%) und andere Agrarbiotope (29,9%) als zufällig erwartet, und die Vögel zogen es vor, in der Nähe gemanagter Agrarbiotope zu brüten. Die Adler jagten vorzugsweise in Grünland, wo sie 86% ihrer Zeit verbrachten, insbesondere in gemanagtem Grünland, mieden jedoch Ackerflächen. Insgesamt waren 51% der Jagdversuche erfolgreich, und wir fanden keine Unterschiede im Jagderfolg zwischen Habitaten. Die Nester erfolgreich brütender Vögel waren von mehr Feldfrüchten/kultiviertem Grünland auf Rotationsbasis (19%) und gemanagtem natürlichen Grünland (1,1%) umgeben als die Nester erfolgloser Paare (16% bzw. 0,7%). Wir fanden außerdem einen negativen Einfluss von Rapsfeldern und gemähtem kultivierten Grünland auf den Fortpflanzungserfolg der Adler, doch diese Effekte unterschieden sich zwischen den Jahren. Unsere Ergebnisse deuten darauf hin, dass der Schreiadler, obwohl er gut an die Nahrungssuche in traditionellen landwirtschaftlichen Nutzflächen angepasst ist, durch Veränderungen der Agrarmethoden und eine Zunahme von Aussaatflächen für gewisse Feldfrüchte, z. B. Raps, bedroht ist. Die Erhaltung verschiedenartiger Feldfrüchte und Grünlandflächen mit eingestreuten stillgelegten Agrarflächen und landwirtschaftlich gänzlich ungenutzten Kleinbiotopen, wie von der EU-Begrünungspolitik gefördert, wäre vorteilhaft für den Schreiadler.

Notes

Acknowledgements

We thank Raivo Endrekson, Tarmo Evestus, Kristo Lauk, Riho Männik, Renno Nellis, Ain Nurmla, Pauli Saag, Urmas Sellis and Indrek Tammekänd for their help in the field and Urmas Abel for help in Eagle data compilation. We also thank anonymous reviewers whose comments significantly helped to improve the earlier drafts of the manuscript. The study was financed by the Life Nature project LIFE04 NAT/EE/000072 Eaglelife—Arrangement of Spotted Eagles and Black Stork conservation in Estonia, the Estonian Environmental Investments Centre, the Estonian Fund for Nature and the Estonian Ministry of Education and Research (grant IUT21-1). The study complies with the current Estonian laws.

References

  1. Arroyo B, García JT, Bretagnolle V (2002) Conservation of the Montagu’s harrier (Circus pygargus) in agricultural areas. Anim Conserv 5:283–290CrossRefGoogle Scholar
  2. Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  3. Bergmanis U, Petrins A, Cirulis V, Matusiak J, Kuze J (2006) Lesser Spotted Eagle Aquila pomarina in Latvia—current status, endangerment and perspectives. Populationsökol Greifvogel Eulenarten 5:95–115Google Scholar
  4. Billeter R, Liira J, Bailey D et al. (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150CrossRefGoogle Scholar
  5. BirdLife International (2015) European Red List of birds: Clanga pomarina (Brehm 1831) http://www.birdlife.org/datazone/userfiles/file/Species/erlob/summarypdfs/22696022_clanga_pomarina.pdf. Accessed 21 Jan 2016
  6. Burel F, Baudry J (1995) Species biodiversity in changing agricultural landscapes: a case study in the Pays d’Auge, France. Agric Ecosyst Environ 55:193–200CrossRefGoogle Scholar
  7. Butet A, Leroux ABA (2001) Effects of agriculture development on vole dynamics and conservation of Montagu’s harrier in western French wetlands. Biol Conserv 100:289–295CrossRefGoogle Scholar
  8. Cardador L, Mañosa S (2011) Foraging habitat use and selection of western Marsh-harriers (Circus aeruginosus) in intensive agricultural landscapes. J Raptor Res 45:168–173CrossRefGoogle Scholar
  9. Caro T, O’Doherty G (1999) On the use of surrogate species in conservation biology. Conserv Biol 13:805–814CrossRefGoogle Scholar
  10. Danko Š, Meyburg B-U, Belka T, Karaska D (1996) Individuelle Kennzeichnung von Schreiadlern Aquila pomarina: Methoden, bisherige Erfahrungen und Ergebnisse. In: Meyburg B-U, Chancellor RD (eds) Eagle studies. World Working Group of Birds of Prey, Berlin, pp 209–243Google Scholar
  11. Donázar JA, Negro JJ, Hiraldo F, Hiraldo F (1993) Foraging habitat selection, land-use changes and population decline in the Lesser Kestrel Falco naumanni. J Appl Ecol 30:515–522CrossRefGoogle Scholar
  12. Dravecký M, Danko Š, Hrtan E, Kicko J, Maderic B, Mihók J, Balla M, Belka T, Karaska D (2013) Colour ringing programme of the Lesser Spotted Eagle (Aquila pomarina) population in Slovakia and its new results in the period 2009–2012. Slovak Rapt J 7:17–36Google Scholar
  13. Estonian Land Board (2013) Estonian Basic Map. http://geoportaal.maaamet.ee/eng/Maps-and-Data/Topographic-Data/Estonian-Basic-Map-p306.html. Accessed 21 January 2016
  14. European Environment Agency (2012) CORINE land cover. http://www.eea.europa.eu/publications/COR0-landcover. Accessed 21 January 2016
  15. Eurostat (2012) Agricultural census in Estonia. http://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_census_in_Estonia Accessed 21 January 2016
  16. Hanski I, Hansson L, Henttonen H (1991) Specialist predators, generalist predators, and the microtine rodent cycle. J Anim Ecol 60:353–367CrossRefGoogle Scholar
  17. Howden SM, Soussana J-F, Tubiello FN, Chhetri N, Dunlop M, Meinke H (2007) Adapting agriculture to climate change. Proc Nat Acad Sci USA 104:19691–19696CrossRefPubMedPubMedCentralGoogle Scholar
  18. Langgemach T, Blohm T, Frey T (2001) Zur Habitatstruktur des Schreiadlers (Aquila pomarina) an seinem westlichen Arealrand-Untersuchungen aus dem Land Brandenburg. Acta Ornithoecol 4:237–267Google Scholar
  19. Lõhmus A (1999) Vole-induced regular fluctuations in the Estonian Owl populations. Ann Zool Fenn 36:167–178Google Scholar
  20. Lõhmus A (2001) Selection of foraging habitats by birds of prey in north-western Tartumaa. Hirundo 14:27–42Google Scholar
  21. Lõhmus A, Väli Ü (2004) The effects of habitat quality and female size on the productivity of the Lesser Spotted Eagle Aquila pomarina in the light of the alternative prey hypothesis. J Avian Biol 35:455–464CrossRefGoogle Scholar
  22. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509CrossRefPubMedGoogle Scholar
  23. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453CrossRefPubMedGoogle Scholar
  24. Meiner A (1999) Land cover of Estonia. Implementation of CORINE land cover project in Estonia. KM ITK, TallinnGoogle Scholar
  25. Metzger MJ, Bunce RGH, Jongman RHG, Mücher CA, Watkins JW (2005) A climatic stratification of the environment of Europe. Global Ecol Biogeogr 14:549–563CrossRefGoogle Scholar
  26. Mirski P (2009) Selection of nesting and foraging habitat by the Lesser Spotted Eagle Aquila pomarina (Brehm) in the Knyszynska forest (NE Poland). Pol J Ecol 57:581–587Google Scholar
  27. Mirski P (2010) Effect of selected environmental factors on hunting methods and hunting success in the Lesser Spotted Eagle Aquila pomarina in North-Eastern Poland. Russ J Ecol 41:197–200CrossRefGoogle Scholar
  28. Panek M, Hušek J (2014) The effect of oilseed rape occurrence on main prey abundance and breeding success of the Common Buzzard Buteo buteo. Bird Study 61:457–464CrossRefGoogle Scholar
  29. Peltonen-Sainio P (2012) Crop production in a northern climate. Build Resil Adapt Clim Change Agric Sect 23:183–216Google Scholar
  30. R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 16 Dec 2015
  31. Reidsma P, Ewert F (2008) Regional farm diversity can reduce vulnerability of food production to climate change. Ecol Soc 13:38CrossRefGoogle Scholar
  32. Reidsma P, Tekelenburg T, Van den Berg M, Alkemade R (2006) Impacts of land-use change on biodiversity: an assessment of agricultural biodiversity in the European Union. Agric Ecosyst Environ 114:86–102CrossRefGoogle Scholar
  33. Robinson RA, Sutherland WJ (2002) Post-war changes in arable farming and biodiversity in Great Britain. J Appl Ecol 39:157–176CrossRefGoogle Scholar
  34. Sachteleben J (1993) Jagdstrategie und Habitatnutzung bei Mäusebussard Buteo buteo und Turmfalke Falco tinnunculus—Konkurrenzvermeidung zweier Greifvogelarten. Ornithol Anz 32:37–43Google Scholar
  35. Šálek M, Schröper L (2008) Population decline of the Little Owl (Athene noctua Scop.) in the Czech Republic. Pol J Ecol 56:527–534Google Scholar
  36. Sánchez-Zapata JA, Carrete M, Gravilov A, Sklyarenko S, Ceballos O, Donazar JA, Hiraldo F (2003) Land use changes and raptor conservation in steppe habitats of Eastern Kazakhstan. Biol Conserv 111:71–77CrossRefGoogle Scholar
  37. Scheller W, Bergmanis U, Meyburg B-U, Furkert B, Knack A, Röper S (2001) Raum-Zeit-Verhalten des Schreiadlers (Aquila pomarina). Acta Ornithoecol 4:75–236Google Scholar
  38. Schneider-Jacoby M (1996) Brutbestand des Seeadlers Haliaetus albicilla und des Schreiadlers Aquila pomarina in den Save-Auen (Kroatien). In: Meyburg B-U, Chancellor RD (eds) Eagle studies. World Working Group of Birds of Prey, Berlin, pp 149–163Google Scholar
  39. Sergio F, Newton I, Marchesi L, Pedrini P (2006) Ecologically justified charisma: preservation of top predators delivers biodiversity conservation. J Appl Ecol 43:1049–1055CrossRefGoogle Scholar
  40. Statistics Estonia (2016) Database of statistics. http://www.stat.ee. Accessed 12 May 2016
  41. Stoate C, Boatman ND, Borralho RJ, Rio Carvalho C, de Snoo GR, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manage 63:337–365CrossRefPubMedGoogle Scholar
  42. Tella JL, Forero MG, Hiraldo F, Donázar JA (1998) Conflicts between Lesser Kestrel conservation and European agricultural policies as identified by habitat use analyses. Conserv Biol 12:593–604CrossRefGoogle Scholar
  43. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefPubMedGoogle Scholar
  44. Treinys R (2004) Important landscape factors for the breeding territory selection by the Lesser Spotted Eagle (Aquila pomarina). Acta Zool Lit 14:58–61CrossRefGoogle Scholar
  45. Treinys R, Dementavičius D (2004) Productivity and diet of Lesser Spotted Eagle (Aquila pomarina) in Lithuania in 2001–2003. Acta Zool Lit 14:83–87CrossRefGoogle Scholar
  46. Treinys R, Drobelis E, Šablevičius B, Naruševičius V, Petraška A (2007) Changes in the abundance of the Lesser Spotted Eagle (Aquila pomarina) breeding population in Lithuania in 1980–2006. Acta Zool Lit 17:64–69CrossRefGoogle Scholar
  47. Ursúa E, Serrano D, Tella JL (2005) Does land irrigation actually reduce foraging habitat for breeding Lesser Kestrels? The role of crop types. Biol Conserv 122:643–648CrossRefGoogle Scholar
  48. Väli Ü (2012) Factors limiting reproductive performance and nestling sex ratio in the Lesser Spotted Eagle Aquila pomarina at the northern limit of its range: the impact of weather and prey abundance. Acta Ornithol 47:157–168CrossRefGoogle Scholar
  49. Väli Ü, Bergmanis U (2017) Apparent survival rates of adult Lesser Spotted Eagle Clanga pomarina estimated by GPS-tracking, colour rings and wing-tags. Bird Study 64:104–107CrossRefGoogle Scholar
  50. Väli Ü, Treinys R, Lõhmus A (2004) Geographical variation in macrohabitat use and preferences of the Lesser Spotted Eagle Aquila pomarina. Ibis 146:661–671CrossRefGoogle Scholar
  51. Väli Ü, Belik VP, Babkin IG (2009) The Lesser Spotted Eagle Aquila pomarina in the North Caucasus, Russian Federation: taxonomic status, genetic diversity, breeding density and nest site characteristics. Sandgrouse 31:122–127Google Scholar
  52. Väli Ü, Männik R, Nellis R, Sein G, Tuvi J (2011) Monitoring Estonian Eagles: examples of estimating status and numbers of rare species. Eesti Looduseuurijate Seltsi Aastaraamat 86:92–106Google Scholar
  53. Väli Ü, Sein G, Laansalu A, Sellis U (2015) Milliseid elupaiku eelistavad meie viud? Eesti Loodus 66:44–48Google Scholar
  54. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499CrossRefGoogle Scholar
  55. Wiens JA, Hayward GD, Holthausen RS, Wisdom MJ (2008) Using surrogate species and groups for conservation planning and management. Bioscience 58:241–252CrossRefGoogle Scholar
  56. Zub K, Pugacewicz E, Jedrzejewska B, Jedrzejewski W (2010) Factors affecting habitat selection by breeding Lesser Spotted Eagles Aquila pomarina in northeastern Poland. Acta Ornithol 45:105–114CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Department of Zoology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
  2. 2.Eagle ClubPõlvamaaEstonia
  3. 3.Environmental BoardPärnuEstonia

Personalised recommendations