Advertisement

Journal of Ornithology

, Volume 158, Issue 2, pp 569–577 | Cite as

Comparative life history of the south temperate Cape Penduline Tit (Anthoscopus minutus) and north temperate Remizidae species

  • Penn LloydEmail author
  • Bernhard D. Frauenknecht
  • Morné A. du Plessis
  • Thomas E. Martin
Original Article

Abstract

We studied the breeding biology of the south temperate Cape Penduline Tit (Anthoscopus minutus) in order to compare its life history traits with those of related north temperate members of the family Remizidae, namely the Eurasian Penduline Tit (Remiz pendulinus) and the Verdin (Auriparus flaviceps). We used this comparison to test key predictions of three hypotheses thought to explain latitudinal variation in life histories among bird species—the seasonality and food limitation hypothesis, nest predation hypothesis and adult mortality hypothesis. Contrary to the general pattern of smaller clutch size and lower adult mortality among south-temperate birds living in less seasonal environments, the Cape Penduline Tit has a clutch size larger than that of the Verdin and similar to that of the Eurasian Penduline Tit, and higher adult mortality than both of the other two species. The most notable difference between the Cape Penduline Tit and the two other species is in parental behavioural strategy, with the former exhibiting bi-parental care at all stages of nesting together with facultative cooperative breeding, whereas the Eurasian Penduline Tit has uni-parental care and the Verdin has a combination of female-only incubation but bi-parental nestling care. Consequently, in comparison to the other two species, the Cape Penduline Tit exhibits greater nest attentiveness during incubation, a similar per-nestling feeding rate and greater post-fledging survival. Its relatively large clutch size, high parental investment and associated high adult mortality in a less seasonal environment are consistent with key predictions of the adult mortality hypothesis but not with key predictions of the seasonality and food limitation hypothesis in explaining life history variation among Remizidae species. These results add to a growing body of evidence of the importance of age-specific mortality in shaping life history evolution.

Keywords

Cooperative breeding Nest predation Reproductive success Life history traits 

Zusammenfassung

Vergleichende Lebensgeschichte der in der südlichen gemäßigten Zone vorkommenden Kapbeutelmeise ( Anthoscopus minutus) und den in der nördlichen gemäßigten Zone vorkommenden Beutelmeisen (Remizidae)

Wir untersuchten die Brutbiologie der in der südlichen gemäßigten Zone vorkommenden Kapbeutelmeise (Anthoscopus minutus), um ihre Lebensgeschichte (life history) mit denen verwandter, in der nördlichen gemäßigten Zone vorkommenden Mitgliedern der Familie Remizidae, nämlich Beutelmeise (Remiz pendulinus) und Goldköpfchen (Auriparus flaviceps), vergleichen zu können. Wir haben diesen Vergleich gemacht, um die Hauptvorhersagen dreier Hypothesen zu testen, welche die mit dem Breitengrad zusammenhängende Variation in der Lebensgeschichte von Vogelarten zu erklären versuchen, die Saisonabhängigkeits- und Nahrungslimitations-Hypothese, die Nestprädations-Hypothese und die Altvogelmortalitäts-Hypothese. Üblicherweise haben Arten der südlichen gemäßigten Zone, die in weniger saisonalen Umwelten leben, kleinere Gelege und niedrigere Altvogelmortalität. Entgegengesetzt zu diesem Muster hat die Kapbeutelmeise jedoch größere Gelege als das Goldköpfchen, eine ähnliche Gelegegröße wie die Beutelmeise und höhere Altvogelmortalität als beide Arten. Die Kapbeutelmeise unterscheidet sich am stärksten hinsichtlich ihrer Brutpflegestrategie—sie weist in allen Stadien der Brut biparentale Brutpflege nebst fakultativem kooperativem Brüten auf, wohingegen bei der Beutelmeise uniparentale Brutpflege und beim Goldköpfchen eine Kombination aus alleiniger Bebrütung durch das Weibchen und biparentaler Nestlingsfürsorge vorkommen. Folglich verbringt die Kapbeutelmeise während der Bebrütung mehr Zeit auf dem Nest und hat eine ähnliche Fütterungsrate pro Nestling und besseres Überleben nach dem Ausfliegen. Die relativ großen Gelege, das hohe Elterninvestment und die damit verbundene höhere Altvogelmortalität bei der Kapbeutelmeise in einer weniger saisonalen Umwelt stimmen mit den Hauptvorhersagen der Altvogelmortalitäts-Hypothese überein, jedoch nicht mit denen der Saisonabhängigkeits- und Nahrungslimitations-Hypothese, wenn es darum geht, Variation in der Lebensgeschichte zwischen verschiedenen Arten der Familie Remizidae zu erklären. Diese Ergebnisse liefern weitere Belege für die Bedeutung altersspezifischer Mortalität bei der Evolution der Lebensgeschichte von Arten.

Notes

Acknowledgements

We thank the many field assistants who helped locate and monitor nests and resight the colour-band combinations of breeding adults each year, particularly Sonya Auer, Ron Bassar, Joseph Fontaine, Simon Davies, David Nkosi, Pierre-Yves Perroi, René van Dijk and Ákos Pogány. We thank Gert Greef and Hilton Westman for permission to work at ESKOM’s Koeberg Nature Reserve. This work was supported in part through National Research Foundation grants (to PL and RA) and National Science Foundation Grants (INT-9906030, DEB-0841764, DEB-1241041 to TEM). Capture and banding activities were licensed by the Western Cape Nature Conservation Board and SAFRING, the South African bird-banding scheme. This study was approved by the Animal Ethics Committee, University of Cape Town and also conducted under the auspices of the University of Montana IACUC protocol #059-10TMMCWRU. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

  1. Ashmole NP (1963) The regulation of numbers of tropical oceanic birds. Ibis 103:458–473Google Scholar
  2. Austin GT (1977) Production and survival of the Verdin. Wilson Bull 89:572–582Google Scholar
  3. Bennett PM, Owens PF (2002) Evolutionary ecology of birds. Oxford University Press, New YorkGoogle Scholar
  4. Chalfoun A, Martin TE (2007) Latitudinal variation in avian incubation attentiveness and a test of the food limitation hypothesis. Anim Behav 73:579–585CrossRefGoogle Scholar
  5. Chown SL, Sinclair BJ, Leinaas HP, Gaston KJ (2004) Hemispheric asymmetries in biodiversity: a serious matter for ecology. PLoS Biol 2:1701–1707CrossRefGoogle Scholar
  6. Cramp S, Perrins CM, Brooks DM (eds) (1993) The birds of the western palearctic, vol 7. Oxford University Press, OxfordGoogle Scholar
  7. Dean WRJ (2005) Cape Penduline Tit Anthoscopus minutus. In: Hockey PAR, Dean WRJ, Ryan PG (eds) Roberts birds of southern Africa, 7th edn. The Trustees of the John Voelcker Bird Book Fund, Cape TownGoogle Scholar
  8. George TL (1987) Greater land bird densities on island vs. mainland: relation to nest predation level. Ecology 68:1393–1400CrossRefGoogle Scholar
  9. Ghalambor CK, Martin TE (2001) Fecundity-survival trade-offs and parental risk-taking in birds. Science 292:494–497CrossRefPubMedGoogle Scholar
  10. Gill SA, Haggerty TM (2012) A comparison of life-history and parental care in temperate and tropical wrens. J Avian Biol 43:461–471CrossRefGoogle Scholar
  11. Harrap S, Quinn D (1996) Tits, nuthatches and treecreepers. A & C Black, LondonGoogle Scholar
  12. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  13. Jetz W, Rubenstein DR (2011) Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr Biol 21:72–78CrossRefPubMedGoogle Scholar
  14. Klimkiewicz MK, Clapp RB, Futcher AG (1983) Longevity records of North American birds: Remizidae through Parulinae. J Field Ornithol 54:287–294Google Scholar
  15. Law R (1979) Optimal life histories under age-specific predation. Am Nat 114:399–417CrossRefGoogle Scholar
  16. Llambías PE, Carro ME, Fernández GJ (2015) Latitudinal differences in life-history traits and parental care in northern and southern temperate zone House Wrens. J Ornithol 156:933–942CrossRefGoogle Scholar
  17. Lloyd P (2004) Variation in nest predation among arid-zone birds. Ostrich 75:228–235CrossRefGoogle Scholar
  18. Lloyd P (2008) Adult survival, dispersal and mate fidelity in the White-fronted Plover Charadrius marginatus. Ibis 150:182–187CrossRefGoogle Scholar
  19. Lloyd P, Martin TE (2016) Fledgling survival increases with development time and adult survival across north and south temperate zones. Ibis 158:135–143CrossRefGoogle Scholar
  20. Lloyd P, Taylor WA, du Plessis MA, Martin TE (2009) Females increase reproductive investment in response to helper-mediated improvements in allo-feeding, nest survival, nestling provisioning and post-fledging survival in the Karoo scrub-robin Cercotrichas coryphaeus. J Avian Biol 40:400–411CrossRefGoogle Scholar
  21. Lloyd P, Abadi F, Altwegg R, Martin TE (2014) South temperate birds have higher apparent adult survival than tropical birds in Africa. J Avian Biol 45:493–500CrossRefGoogle Scholar
  22. Martin TE (1995) Avian life history evolution in relation to nest sites, nest predation, and food. Ecol Monogr 65:101–127CrossRefGoogle Scholar
  23. Martin TE (1996) Life history evolution in tropical and south temperate birds: what do we really know? J Avian Biol 27:263–272CrossRefGoogle Scholar
  24. Martin TE (2002) A new view of avian life-history evolution tested on an incubation paradox. Proc R Soc Lond B 269:309–316CrossRefGoogle Scholar
  25. Martin TE (2014) A conceptual framework for clutch-size evolution in songbirds. Am Nat 183:313–324CrossRefPubMedGoogle Scholar
  26. Martin TE (2015) Age-related mortality explains life history strategies of tropical and temperate songbirds. Science 349:966–970CrossRefPubMedGoogle Scholar
  27. Martin TE, Clobert J (1996) Nest predation and avian life-history evolution in Europe versus North America: a possible role of humans? Am Nat 147:1028–1046CrossRefGoogle Scholar
  28. Martin TE, Martin PR, Olson CR, Heidinger BJ, Fontaine JJ (2000) Parental care and clutch sizes in North and South American birds. Science 287:1482–1485CrossRefPubMedGoogle Scholar
  29. Martin TE, Bassar RD, Bassar SK, Fontaine JJ, Lloyd P, Mathewson HA, Niklison AM, Chalfoun A (2006) Life-history and ecological correlates of geographic variation in egg and clutch mass among passerine species. Evolution 60:390–398CrossRefPubMedGoogle Scholar
  30. Martin TE, Auer SK, Bassar RD, Niklison AM, Lloyd P (2007) Geographic variation in avian incubation periods and parental influences on embryonic temperature. Evolution 61:2558–2569CrossRefPubMedGoogle Scholar
  31. Martin TE, Lloyd P, Bosque C, Barton DC, Biancucci AL, Cheng YR, Ton R (2011) Growth rate variation among passerine species in tropical and temperate sites: an antagonistic interaction between parental food provisioning and nest predation risk. Evolution 65:1607–1622CrossRefPubMedGoogle Scholar
  32. Martin TE, Oteyza JC, Boyce AJ, Lloyd P, Ton R (2015) Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time. Am Nat 186:223–236CrossRefPubMedGoogle Scholar
  33. Mayfield HE (1961) Nesting success calculated from exposure. Wilson Bull 73:255–261Google Scholar
  34. Michod RE (1979) Evolution of life histories in response to age-specific mortality factors. Am Nat 113:531–550CrossRefGoogle Scholar
  35. Persson O, Öhrström P (1989) A new avian mating system: ambisexual polygamy in the Penduline Tit Remiz pendulinus. Ornis Scand 20:105–111CrossRefGoogle Scholar
  36. Pogány Á, van Dijk RE, Horváth P, Székely T (2012) Parental behavior and reproductive output in male-only cared and female-only cared clutches in the Eurasian Penduline Tit (Remiz pendulinus). Auk 129:773–781CrossRefGoogle Scholar
  37. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 01 Oct 2016
  38. Ricklefs RE (1966) The temporal component of diversity among species of birds. Evolution 20:235–242CrossRefGoogle Scholar
  39. Ricklefs RE (1980) Geographic variation in clutch size among passerine birds: Ashmole’s hypothesis. Auk 97:38–49Google Scholar
  40. Ricklefs RE (2000) Density dependence, evolutionary optimization, and the diversification of avian life histories. Condor 102:9–22CrossRefGoogle Scholar
  41. Ricklefs RE, Starck JM (1998) Embryonic growth and development. In: Starck JM, Ricklefs RE (eds) Avian growth and development. Oxford University Press, Oxford, pp 31–58Google Scholar
  42. Russell EM, Yom-Tov Y, Geffen E (2004) Extended parental care and delayed dispersal: northern, tropical, and southern passerines compared. Behav Ecol 15:831–838CrossRefGoogle Scholar
  43. Shine R, Olsson M (2003) When to be born? Prolonged pregnancy or incubation enhances locomotor performance in neonatal lizards (Scincidae). J Evol Biol 16:823–832CrossRefPubMedGoogle Scholar
  44. Skead CJ (1959) A study of the Cape Penduline Tit (Anthoscopus minutus minutus) (Shaw & Nodder). Ostrich 30[Suppl 1]:274–288CrossRefGoogle Scholar
  45. Skutch AF (1949) Do tropical birds rear as many young as they can nourish? Ibis 91:430–455CrossRefGoogle Scholar
  46. Staav R (1998) Longevity list of birds ringed in Europe. EURING Newsl 2:9–17Google Scholar
  47. Szentirmai I, Székely T, Komdeur J (2007) Sexual conflict over care: antagonistic effects of clutch desertion on reproductive success of male and female penduline tits. J Evol Biol 20:1739–1744CrossRefPubMedGoogle Scholar
  48. Taylor WK (1971) A breeding biology study of the Verdin, Auriparus flaviceps (Sundevall) in Arizona. Am Midl Nat 85:289–328CrossRefGoogle Scholar
  49. van Dijk R, Pogány A, Komdeur J, Lloyd P, Székely T (2010) Sexual conflict predicts morphology and behavior in two species of penduline tits. BMC Evol Biol 10:107CrossRefPubMedPubMedCentralGoogle Scholar
  50. Williams GC (1966) Natural selection, the cost of reproduction, and a refinement of Lack’s principle. Am Nat 100:687–690CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2016

Authors and Affiliations

  1. 1.DST/NRF Centre of Excellence, Percy FitzPatrick InstituteUniversity of Cape TownRondeboschSouth Africa
  2. 2.Biodiversity Assessment and Management Pty LtdClevelandAustralia
  3. 3.U. S. Geological Survey Montana Cooperative Wildlife Research UnitUniversity of MontanaMissoulaUSA

Personalised recommendations