Advertisement

Journal of Ornithology

, Volume 158, Issue 2, pp 365–378 | Cite as

Range-wide patterns of population differentiation of Eurasian Black Terns (Chlidonias niger niger) related to use of discrete post-nuptial staging sites

  • Patricia Szczys
  • Karl A. Lamothe
  • Alexey Druzyaka
  • Martin J. M. Poot
  • Valeri Siokhin
  • Jan van der Winden
Original Article

Abstract

The Eurasian Black Tern, Chlidonias niger niger, nests in marshes continuously distributed across Eurasia, but migration routes, staging sites, and non-breeding distributions are not well understood. In western Europe some populations have declined substantially over several decades (>90%), thus a more complete understanding of breeding site connectivity and migratory routes is needed. We collected tissue samples of terns in breeding colonies in the Netherlands, Latvia, southern Ukraine, eastern Siberian Russia, and from individuals at one important post-nuptial staging site in The Netherlands. Microsatellite data suggest significant differentiation among all breeding sites and the pattern is supported by differences among sites in most morphological measures. Conversely, mitochondrial DNA suggests similarity and population expansion especially from the region around Ukraine. We assigned 70% of the birds sampled on the staging site to the Netherlands/Latvia breeding population, but none to the southern Ukrainian or eastern Russian population. Our data indicated limited contact at post-nuptial staging sites contribute to genetic structure among breeding sites for this species. Our study demonstrates the utility of genetic data in migration studies to delineate migratory flyways and highlight the importance of specific staging sites to specific breeding subpopulations.

Keywords

Black Tern Chlidonias niger Eurasia Microsatellite Morphology mtDNA Population structure 

Zusammenfassung

Verbreitungsgebietweite Muster der Populationsdifferenzierung bei der Trauerseeschwalbe Chlidonias niger niger im Zusammenhang mit der Nutzung definierter nachbrutzeitlicher Sammelplätze

Die Trauerseeschwalbe brütet in Sumpfgebieten und ist über ganz Eurasien verbreitet; über ihre Zugwege, Sammelplätze und über ihre Verbreitung außerhalb der Brutzeit ist dagegen wenig bekannt. In Westeuropa haben manche Populationen über mehrere Jahrzehnte hinweg merklich (>90%) abgenommen, daher besteht Bedarf an umfassenderen Kenntnissen über Brutplatzkonnektivität und Zugstrecken. Wir sammelten Gewebeproben von Seeschwalben aus Brutkolonien in den Niederlanden, Lettland, der Südukraine, aus dem ostsibirischen Russland und von Individuen an einem bedeutenden nachbrutzeitlichen Sammelplatz in den Niederlanden. Daten auf der Basis von Mikrosatelliten-DNA weisen auf eine signifikante Differenzierung zwischen allen Brutgebieten hin, und dieses Muster wird von morphometrischen Unterschieden bestätigt. Umgekehrt spricht die mitochondriale DNA für Ähnlichkeit und eine Populationsexpansion speziell aus der Region um die Ukraine. Wir konnten 70% der am Sammelplatz beprobten Vögel der niederländischen/lettischen Brutpopulation zuordnen, dagegen keine den Populationen der Südukraine oder Ostrusslands. Unsere Daten deuten darauf hin, dass eingeschränkter Kontakt an den nachbrutzeitlichen Sammelplätzen bei dieser Art zur genetischen Struktur zwischen den Brutgebieten beiträgt. Unsere Studie verdeutlicht die Nützlichkeit genetischer Daten für Zuguntersuchungen, um Zugwege aufzuzeigen und die Bedeutung spezifischer Sammelplätze für spezifische Sub-Brutpopulationen zu unterstreichen.

Notes

Acknowledgements

We thank Phillip Elliott and Matthew Graham and two anonymous reviewers whose evaluation improved the manuscript. Funding was supplied by CSU-AAUP Research Grants and a Nisbet Research Grant from The Waterbird Society to P. Szczys, a Jean H. Thoreson ECSU-AAUP Scholarship to K.A. Lamothe, and The Rufford Foundation, Wetlands International and the Erasmus MC, Rotterdam to J. van der Winden. Data collection in Siberia, Russia was supported by the Russian Science Foundation Grant N 14-14-00603. Marcis Leja, Janis Viksne, Petro Gorlov, Josif Chernichko, Vladimir Shilo, and Jean-Marc Paillisson are thanked for field support of this project. This study complied with the current laws of the relevant countries

Supplementary material

10336_2016_1408_MOESM1_ESM.docx (213 kb)
Supplementary material 1 (DOCX 213 kb)

References

  1. Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48CrossRefPubMedGoogle Scholar
  2. Becker P, Ezard HG, Ludwigs T, Sauer-Gürth JD, Wink M (2008) Population sex ratio shift from fledging to recruitment: consequences for demography in a philopatric seabird. Oikos 117:60–68CrossRefGoogle Scholar
  3. Beerli P (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics 22:341–345CrossRefPubMedGoogle Scholar
  4. Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773PubMedPubMedCentralGoogle Scholar
  5. Birdlife International (2015) European Red List of Birds. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  6. Boutilier ST, Taylor SA, Morris-Pocock JA, Lavoie RA, Friesen VL (2014) Evidence for genetic differentiation among Caspian Tern (Hydroprogne caspia) populations in North America. Conserv Genet 15:275–281CrossRefGoogle Scholar
  7. Bridge ES, Jones AW, Baker AJ (2005) A phylogenetic framework for the terns (Sternini) inferred from mtDNA sequences: implications for taxonomy and plumage evolution. Mol Phyl Evol 32:459–469CrossRefGoogle Scholar
  8. Buehler DM, Baker AJ (2005) Population divergence times and historical demography in Red Knots and Dunlins. Condor 107:497–513CrossRefGoogle Scholar
  9. Buehler DM, Baker AJ, Piersma T (2006) Reconstructing palaeoflyways of the late Pleistocene and early Holocene Red Knot Calidris canutus. Ardea 93:485–498Google Scholar
  10. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  11. Clarke AL, Sæther BE, Røskaft E (1997) Sex biases in avian dispersal: a reappraisal. Oikos 97:429–38CrossRefGoogle Scholar
  12. Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM (2009) The last glacial maximum. Science 325:710–714CrossRefPubMedGoogle Scholar
  13. Conklin JR, Reneerkens J, Verkuil YI, Tomkovich PR, Palsboll PJ, Piersmam T (2016) Low genetic differentiation between Greenlandic and Siberian Sanderling populations implies a different phylogenetic history than found in Red Knots. J Ornithol 157:325–332CrossRefGoogle Scholar
  14. Connan M, Teske PR, Tree AJ, Whittington PA, McQuaid CD (2015) The subspecies of Antarctic Terns (Sterna vittata) wintering on the South African coast: evidence from morphology, genetics and stable isotopes. Emu 115:223–236CrossRefGoogle Scholar
  15. Cramp S (1985) The birds of the Western Palearctic, vol 4. Oxford University Press, OxfordGoogle Scholar
  16. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557CrossRefPubMedGoogle Scholar
  17. Draheim HM, Miller MP, Baird P, Haig SM (2010) Subspecific status and population genetic structure of Least Terns (Sternula antillarum) inferred by mitochondrial DNA control-region sequences and microsatellite DNA. Auk 127:807–819CrossRefGoogle Scholar
  18. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  20. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  21. Faria PJ, Campos FP, Branco JO, Musso CM, Morgante JS, Bruford MW (2010) Population structure in the South American Tern Sterna hirundinacea in the South Atlantic: two populations with distinct breeding phenologies. J Avian Biol 41:378–387CrossRefGoogle Scholar
  22. Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 1:116–121CrossRefGoogle Scholar
  23. Friesen VL, Burg TM, McCoy KD (2007) Mechanisms of population differentiation in seabirds. Mol Ecol 16:1765–1785CrossRefPubMedGoogle Scholar
  24. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  25. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CrossRefPubMedGoogle Scholar
  26. Given AD, Mills A, Baker AJ (2002) Isolation of polymorphic microsatellite loci from the red-billed gull (Larus novaehollandiae scopulinus) and amplification in related species. Mol Ecol Notes 2:416–418CrossRefGoogle Scholar
  27. Glutz von Blotzheim UN, Bauer KM (1982) Handbuch der Vögel Mitteleuropas, vol 8. Akademische Verlaggesellschaft, WiesbadenGoogle Scholar
  28. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162CrossRefGoogle Scholar
  29. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486CrossRefGoogle Scholar
  30. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372CrossRefPubMedGoogle Scholar
  31. Haverschmidt F (1978) Die Trauerseeschwalbe Chlidonias niger. Die Neue Brehm-Bücherei, A. Ziemsen Verlag, Wittenberg LutherstadtGoogle Scholar
  32. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evol 53:1898–1914CrossRefGoogle Scholar
  33. Jones KL, Krapu GL, Brandt DA, Ashley MV (2005) Population genetic structure in migratory sandhill cranes and the role of Pleistocene glaciations. Mol Ecol 14:2645–2657CrossRefPubMedGoogle Scholar
  34. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg N, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kraaijeveld K (2008) Non-breeding habitat preference affects ecological speciation in migratory waders. Naturwissenschaften 95:347–354CrossRefPubMedGoogle Scholar
  37. Maudet C, Miller C, Bassano B, Breitenmoser-Wursten C, Gauthier D, Obexer-Ruff G, Michallet J, Taberlet P, Luikart G (2002) Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex [Capra ibex (ibex)]. Mol Ecol 11:421–436CrossRefGoogle Scholar
  38. Meirmans PG (2014) Nonconvergence in Bayesian estimation of migration rates. Mol Ecol Resour 14:726–733CrossRefPubMedGoogle Scholar
  39. Miller MP, Mullins TD, Haig SM (2013) Genetic structure, diversity and subspecies status of Gull-billed Terns (Gelochelidon nilotica) from the United States. Waterbirds 36:310–318CrossRefGoogle Scholar
  40. Mossman CA, Waser PM (1999) Genetic detection of sex-biased dispersal. Mol Ecol 8:1063–1067CrossRefPubMedGoogle Scholar
  41. Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787CrossRefGoogle Scholar
  42. Olsen KM, Larsson H (1995) Terns of Europe and North America. A&C Black, LondonGoogle Scholar
  43. Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  44. Peakall ROD, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  45. Peck DR, Congdon BC (2004) Reconciling historical processes and population structure in the sooty tern Sterna fuscata. J Avian Biol 35:327–335CrossRefGoogle Scholar
  46. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CrossRefPubMedGoogle Scholar
  47. PopArt version 1.7. http://popart.otago.ac.nz
  48. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  49. Puechmaille SJ (2016) The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol Ecol Resour 16:608–627CrossRefPubMedGoogle Scholar
  50. R Core Team (2016) R: a language and environment for statistical computing, version 3.3.1. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org
  51. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  52. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefPubMedGoogle Scholar
  53. Szczys P, Hughes CR, Kesseli RV (2005) Novel microsatellite markers used to determine the population genetic structure of the endangered Roseate Tern, Sterna dougallii, in Northwest Atlantic and Western Australia. Conserv Genet 6:461–466CrossRefGoogle Scholar
  54. Szczys P, Nisbet IC, Wingate DB (2012) Conservation genetics of the Common Tern (Sterna hirundo) in the North Atlantic region; implications for the critically endangered population at Bermuda. Conserv Genet 13:1039–1043CrossRefGoogle Scholar
  55. Szostek KL, Schaub M, Becker PH (2014) Immigrants are attracted by local pre-breeders and recruits in a seabird colony. J Anim Ecol 83:1015–1024CrossRefPubMedGoogle Scholar
  56. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–589PubMedPubMedCentralGoogle Scholar
  57. Tirard C, Helfenstein F, Danchin E (2002) Polymorphic microsatellites in the black-legged kittiwake Rissa tridactyla. Mol Ecol Notes 2:431–433CrossRefGoogle Scholar
  58. Trimbos KB, Musters CJM, Verkuil YI, Kentie R, Piersma T, de Snoo GR (2011) No evident spatial genetic structuring in the rapidly declining Black-tailed Godwit Limosa limosa limosa in The Netherlands. Conserv Genet 12:629–636CrossRefGoogle Scholar
  59. Van der Winden J (2002) The odyssey of the Black Tern Chlidonias niger: migration ecology in Europe and Africa. Ardea 90:421–435Google Scholar
  60. Van der Winden J (2004) Ringonderzoek aan de Zwarte Stern Chlidonias niger in het Groene Hart. Het Vogeljaar 52:155–161Google Scholar
  61. Van der Winden J (2008) A review of population estimates of the Eurasian Black Tern Chlidonias niger niger. Vogelwelt 129:47–50Google Scholar
  62. Van der Winden J, Fijn RC, van Horssen PW, Gerritsen-Davidse D, Piersma T (2014) Idiosyncratic migrations of Black Terns (Chlidonias niger): diversity in routes and stopovers. Waterbirds 37:162–174CrossRefGoogle Scholar
  63. Van der Winden J, Hagemeijer W, Terlouw R (1996) Heeft de Zwarte Stern Chlidonias niger een toekomst als broedvogel in Nederland? Limosa 69:149–164Google Scholar
  64. Van der Winden J, Nyame SK, Ntiamoa-Baidu Y, Gordon C (2000) Black Terns in Ghana, October 2000. Bureau Waardenburg, Ghana Wildlife Society, Centre for African Wetlands, Bureau Waardenburg report, 1052Google Scholar
  65. Verkuil YI, Piersma T, Jukema J, Hooijmeijer JC, Zwarts L, Baker AJ (2012) The interplay between habitat availability and population differentiation: a case study on genetic and morphological structure in an inland wader (Charadriiformes). Biol J Linnean Soc 106:641–656CrossRefGoogle Scholar
  66. Waser PM, Strobeck C (1998) Genetic signatures of interpopulation dispersal. Trends Ecol Evol 13:43–44CrossRefPubMedGoogle Scholar
  67. Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328CrossRefPubMedGoogle Scholar
  68. Wetlands International (2006) Waterbird population estimates, 4th edn. Wetlands International, WageningenGoogle Scholar
  69. Whittier JB, Leslie DM, Van Den Bussche RA (2006) Genetic variation among subspecies of Least Tern (Sterna antillarum): implications for conservation. Waterbirds 29:176–184CrossRefGoogle Scholar
  70. Wickham H (2009) Ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  71. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedPubMedCentralGoogle Scholar
  72. Wright S (1943) Isolation by distance. Genetics 28:114PubMedPubMedCentralGoogle Scholar
  73. Zink RM, Pavlova A, Drovetski S, Rohwer S (2008) Mitochondrial phylogeographies of five widespread Eurasian bird species. J Ornithol 149:399–413CrossRefGoogle Scholar
  74. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution. Methods Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2016

Authors and Affiliations

  1. 1.Eastern Connecticut State UniversityWillimanticUSA
  2. 2.University of TorontoTorontoCanada
  3. 3.Institute of Systematic and Ecology of Animals, SB RASNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.Statistics NetherlandsThe HagueThe Netherlands
  6. 6.MelitopolUkraine
  7. 7.Ecology, Research and ConsultancyUtrechtThe Netherlands

Personalised recommendations