Journal of Ornithology

, Volume 158, Issue 1, pp 333–337 | Cite as

Evidence for brood parasitism in a critically endangered Charadriiform with implications for conservation

  • Ashley L. Overbeek
  • Mark E. Hauber
  • Elizabeth Brown
  • Simone Cleland
  • Richard F. Maloney
  • Tammy E. Steeves
Short Communication


Two captive-reared birds of wild origin presumed to be Kakī/Black Stilt (Himantopus novaezelandiae) were found to display plumage atypical of Kakī. We have combined genetic and non-genetic data to test the hypothesis that these birds are a product of brood parasitism by “non-kakī” [i.e. Poaka/Pied Stilt (Himantopus himantopus leucocephalus) or Kakī–Poaka hybrids]. We found that these atypically plumed birds have cytochrome b haplotypes and microsatellite alleles that could not be attributed to the putative Kakī parents associated with the nest, thus providing the first evidence for brood parasitism in Kakī.


Black Stilt Pied Stilt Hybrids Interspecific brood parasitism Egg dumping Conservation management 


Ein Beleg für Brutparasitismus bei einem vom Aussterben bedrohten Regenpfeifer mit Folgen für die Erhaltung der Art Zwei in freier Wildbahn geschlüpfte und dann in Gefangenschaft aufgezogene Vögel, die für Schwarzstelzenläufer (Himantopus novaezelandiae) gehalten worden waren, wiesen ein für diese Art untypisches Gefieder auf. Wir kombinieren genetische und andere Daten, um die Hypothese zu testen, dass diese Vögel das Produkt von Brutparasitismus durch Weißgesicht-Stelzenläufer (Himantopus himantopus leucocephalus) oder Schwarzstelzenläufer-Weißgesicht-Stelzenläufer-Hybriden waren. Wir zeigen, dass diese untypisch gefärbten Vögel Cytochrom b-Haplotypen und Mikrosatellitenallele hatten, die nicht den mutmaßlichen Schwarzstelzenläufer-Elternvögeln, die mit dem Nest assoziiert waren, zugeordnet werden konnten, und liefern somit den ersten Beleg für Brutparasitismus beim Schwarzstelzenläufer.



We gratefully acknowledge the Kakī Recovery Group for sample collection, data management and helpful general discussion. We also thank Katherine McBride for laboratory assistance and Matt Walters for graphics support. Sampling was conducted during the day-to-day activities of the Kakī Recovery Programme according to best practice guidelines issued by the New Zealand Department of Conservation. We are appreciative for funding support from the University of Canterbury (T.E.S), University of Auckland (M.E.H) and a U.S. National Science Foundation Behavioral Systems Grant #1456524 (M.E.H). The experiments comply with the current laws of the country in which they were performed.


  1. Arnold KE, Owens IP (2002) Extra-pair paternity and egg dumping in birds: life history, parental care and the risk of retaliation. Proc R Soc B 269:1263–1269CrossRefPubMedPubMedCentralGoogle Scholar
  2. Davies NB (2000) Cuckoos, Cowbirds and other cheats. T. and A.D. Poyser, LondonGoogle Scholar
  3. Hagen EN, Hale ML, Maloney RF, Steeves TE (2011) Conservation genetic management of a critically endangered New Zealand endemic bird: minimizing inbreeding in the black stilt Himantopus novaezelandiae. Ibis 153:556–561CrossRefGoogle Scholar
  4. Lemons PR, Sedinger JS, Svete Randle P (2011) Detecting conspecific brood parasitism using egg morphology in black brant Branta bernicla nigricans. J Avian Biol 42:282–288CrossRefGoogle Scholar
  5. Lyon BE, Eadie JM (1991) Mode of development and interspecific avian brood parasitism. Behav Ecol 2:309–318CrossRefGoogle Scholar
  6. Lyon BE, Eadie JM (2008) Conspecific brood parasitism in birds: a life-history perspective. Annu Rev Ecol Evol Syst 39:343–363CrossRefGoogle Scholar
  7. MacWhirter RB (1989) Minireview: on the rarity of intraspecific brood parasitism. Condor 91:485–492CrossRefGoogle Scholar
  8. Payne RB (1998) Brood parasitism in birds: strangers in the nest. Bioscience 48:377–386CrossRefGoogle Scholar
  9. Pierce RJ (1982) The ecology of pied and black stilts. Unpublished PhD thesis. University of Otago, DunedinGoogle Scholar
  10. Pierce RJ (1986) Differences in susceptibility to predation during nest between pied and black stilts (Himantopus spp). Auk 103:273–280Google Scholar
  11. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  12. Shaw RC, Feeney WE, Hauber ME (2014) Nest destruction elicits indiscriminate brood parasitism in a captive bird. Ecol Evol 4:4500–4504CrossRefPubMedPubMedCentralGoogle Scholar
  13. Sorenson MD (1995) Evidence of conspecific nest parasitism and egg discrimination in the Sora. Condor 97:819–821CrossRefGoogle Scholar
  14. Steeves TE, Hale ML, Gemmell NJ (2008) Development of polymorphic microsatellite markers for the New Zealand black stilt (Himantopus novaezelandiae) and cross-amplification in the pied stilt (Himantopus himantopus leucocephalus). Mol Ecol Resour 8:1105–1107CrossRefPubMedGoogle Scholar
  15. Steeves TE, Maloney RF, Hale ML, Tylianakis JM, Gemmell NJ (2010) Genetic analyses reveal hybridization but no hybrid swarm in one of the world’s rarest birds. Mol Ecol 19:5090–5100CrossRefPubMedGoogle Scholar
  16. Yom-Tov Y (2001) An updated list and some comments on the occurrence of intraspecific nest parasitism in birds. Ibis 143:133–143CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2016

Authors and Affiliations

  • Ashley L. Overbeek
    • 1
  • Mark E. Hauber
    • 2
  • Elizabeth Brown
    • 3
  • Simone Cleland
    • 3
  • Richard F. Maloney
    • 4
  • Tammy E. Steeves
    • 1
  1. 1.School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.Department of Psychology, Hunter College and the Graduate CenterCity University of New YorkNew YorkUSA
  3. 3.Department of ConservationTwizelNew Zealand
  4. 4.Department of ConservationChristchurch Mail CentreChristchurchNew Zealand

Personalised recommendations