Journal of Ornithology

, Volume 157, Issue 3, pp 913–918 | Cite as

Phylogenetic position of the Wallcreeper Tichodroma muraria

  • Min Zhao
  • Per Alström
  • Urban Olsson
  • Yanhua Qu
  • Fumin Lei
Short Communication


The Wallcreeper Tichodroma muraria is usually placed in a monotypic family or subfamily within the superfamily Certhioidea, with assumed close relationships to Certhia (treecreepers), Sitta (nuthatches) and Salpornis (spotted creepers). Previous studies have suggested that Tichodroma is most closely related to Sitta, alternatively to Salpornis. We analysed the relationships of Tichodroma using two mitochondrial and five nuclear loci. The tree based on concatenated sequences strongly supported a sister relationship between Tichodroma and Sitta, as well as between Salpornis and Certhia. However, species tree analysis (MP-EST) was unable to resolve these relationships, and although the concatenation tree remains the best hypothesis, more data are needed to corroborate this.


Taxonomy Phylogeny Systematics Passeriformes 


Die phylogenetische Stellung des Mauerläufers Tichodroma muraria Der Mauerläufer Tichodroma muraria wird normalerweise einer monotypischen Familie oder Unterfamilie innerhalb der Überfamilie Certhioidea zugeordnet, und enge Beziehungen zu den Gattungen Certhia (Baumläufer), Sitta (Kleiber) und Salpornis (Fleckenbaumläufer) werden angenommen. Vorherige Studien haben darauf hingedeutet, dass Tichodroma am engsten mit Sitta verwandt ist oder alternativ mit Salpornis. Wir haben die Verwandtschaftsbeziehungen von Tichodroma anhand von zwei mitochondrialen und fünf nukleären Loci analysiert. Der auf zusammenhängenden Sequenzen basierende Stammbaum stützt deutlich eine Schwestergruppenbeziehung zwischen Tichodroma und Sitta sowie zwischen Salpornis und Certhia. Eine Artenbaum-Analyse (MP-EST) war jedoch nicht in der Lage, diese Beziehungen zu klären, und obwohl sich der auf zusammenhängenden Sequenzen basierende Stammbaum als die beste Hypothese erwies, sind mehr Daten notwendig, um dies zu untermauern.



We thank Chentao Wei and Dezhi Zhang for their advice on software use, Tim Shaw for STRAW web server support, and Cong Fu for the use of the Wallcreeper picture in Fig. 2. P.A. and U.O. gratefully acknowledge The Sound Approach and Jornvall Foundation for support.

Supplementary material

10336_2016_1340_MOESM1_ESM.pdf (2.2 mb)
Supplementary material 1 (PDF 2244 kb)


  1. Degnan JH, Rosenberg NA (2006) Discordance of species trees with their most likely gene trees. PLoS Genet 2:762–768. doi: 10.1371/journal.pgen.0020068 CrossRefGoogle Scholar
  2. del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E (eds) (2015). Handbook of the Birds of the World Alive. Lynx, Barcelona. (retrieved from on 15 May 2015)
  3. Dickinson EC, Christidis L (eds) (2014) The Howard & Moore complete checklist of the birds of the world, 4th edn, vol. 2: passerines. Aves, EastbourneGoogle Scholar
  4. Gill F, Donsker D (2015) IOC World Bird List (v.5.2). doi: 10.14344/IOC.ML.5.2. Accessed on 17 May 2015
  5. Huelsenbeck J, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi: 10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  6. Kubatko LS, Degnan JH (2007) Inconsistency of phylogenetic esti-mates from concatenated data under coalescence. Syst Biol 56:17–24. doi: 10.1080/10635150601146041 CrossRefPubMedGoogle Scholar
  7. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701. doi: 10.1093/molbev/mss020 CrossRefPubMedGoogle Scholar
  8. Liu L, Edwards S (2010) A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evol Biol 10:302. doi: 10.1186/1471-2148-10-302 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Rambaut A, Suchard M, Xie D, Drummond A (2014) Tracer v1.6, available from
  10. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New HavenGoogle Scholar
  11. Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New HavenGoogle Scholar
  12. Silvestro D, Michalak I (2012) raxmlGUI: a graphical front-end for RAxML. Organ Divers Evol 12:335–337. doi: 10.1007/s13127-011-0056-0 CrossRefGoogle Scholar
  13. Stamatakis A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Tietze D, Martens J (2010) Intraspecific differentiation in Spotted Creepers, Salpornis spilonotus (Aves: Passeriformes: Certhiidae) Vertebrate. Zoology 60:163–170Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2016

Authors and Affiliations

  1. 1.Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Animal Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  4. 4.Swedish Species Information CentreSwedish University of Agricultural SciencesUppsalaSweden
  5. 5.Systematics and Biodiversity, Department of Biology and Environmental SciencesUniversity of GothenburgGöteborgSweden

Personalised recommendations