Advertisement

Journal of Ornithology

, Volume 157, Issue 3, pp 681–693 | Cite as

Spring and fall migration phenology of an Arctic-breeding passerine

  • Emily A. McKinnon
  • C. M. Macdonald
  • H. G. Gilchrist
  • O. P. Love
Original Article

Abstract

Understanding patterns in avian migration phenology and the proximate mechanisms for such patterns is important for assessing behavioural responses of individuals or populations to climate change. Among songbirds, protandry in spring is a common pattern; phenology in fall is less well described. Using tracking data collected from geolocators deployed at a breeding site, and capture data from banding stations, we assessed fall and spring migration phenology of an Arctic-breeding passerine, the Snow Bunting (Plectrophenax nivalis), by sex and age. We measured migration timing, speed, and distance, as well as duration of migration stopovers to test proximate mechanisms for observed sex and age differences in spring and fall migration phenology. During fall migration, hatch-year birds preceded adults, and adult males tended to precede adult females; however, there remained extensive variation by year. Males and females tracked directly arrived at winter sites at approximately the same time. During early spring migration, Snow Buntings exhibited moderate protandry, where after-second-year males preceded all other age-sex classes by ~6 days, on average. Surprisingly, protandry was not apparent at late spring migration or at breeding arrival. Instead, arrival dates by sex and age appeared highly variable between years. The winter site arrival date was predicted by fall migration departure date, total number of stopover days, migration speed, and migration distance. The breeding site arrival date was similarly predicted by spring migration departure date, total stopover days, and migration speed. Our results provide key baseline data for monitoring ongoing changes in migration phenology of this important Arctic-breeding songbird, as climate change effects become more pronounced across temperate and Arctic regions.

Keywords

Climate change Migration timing Geolocators Banding data Autumn migration 

Zusammenfassung

Zugphänologie in Frühjahr und Herbst bei einem in arktischen Regionen brütenden Singvogel

Um Verhaltensreaktionen von Individuen oder Populationen auf den Klimawandel beurteilen zu können, ist es wichtig, die Muster der Vogelzugphänologie sowie die ihnen unmittelbar zugrunde liegenden Mechanismen zu verstehen. Bei Singvögeln ist Protandrie im Frühling ein häufig zu beobachtendes Muster; die Phänologie im Herbst ist weniger gut beschrieben. Anhand von Peildaten aus Geolokatoren, die den Vögeln an einem Brutplatz angelegt wurden, sowie Fangdaten von Beringungsstationen untersuchten wir die Herbst- und Frühjahrs-Zugphänologie eines in arktischen Regionen brütenden Singvogels, der Schneeammer (Plectrophenax nivalis), nach Alter und Geschlecht. Wir bestimmten den zeitlichen Ablauf des Zuggeschehens, Geschwindigkeit und Entfernung ebenso wie die Dauer von Zugunterbrechungen, um die den beobachteten Geschlechts- und Altersunterschieden in der Frühjahrs- und Herbst-Zugphänologie unmittelbar zugrunde liegenden Mechanismen zu untersuchen. Auf dem Herbstzug flogen diesjährige Vögel früher als die Adulten weg; adulte Männchen zogen tendenziell vor den adulten Weibchen; allerdings gab es hier eine breitgestreute Variation von Jahr zu Jahr. Die durch Besenderung direkt verfolgten Männchen und Weibchen kamen etwa zeitgleich in den Überwinterungsgebieten an. Während des zeitigen Frühjahrszuges zeigten die Schneeammern gemäßigte Protandrie, wobei Männchen über dem zweiten Lebensjahr allen anderen Alters- und Geschlechtsklassen im Schnitt um etwa sechs Tage voraus waren. Überraschenderweise war weder auf dem späten Frühjahrszug noch bei der Ankunft im Brutgebiet Protandrie zu beobachten. Stattdessen erschienen die Ankunftsdaten nach Geschlecht und Alter von Jahr zu Jahr höchst variabel. Das Ankunftsdatum im Überwinterungsgebiet konnte mithilfe des Abzugsdatums beim Herbstzug, der Gesamtzahl von Rasttagen und der Zugstrecke vorhergesagt werden. Das Ankunftsdatum im Brutgebiet ließ sich auf ähnliche Weise anhand des Abzugsdatums beim Frühjahrszug, der Summe der Rasttage und der Zuggeschwindigkeit vorhersagen. Unsere Ergebnisse liefern wichtige Grunddaten zum Monitoring stattfindender Veränderungen der Zugphänologie dieses wichtigen arktischen Brutvogels, während sich die Auswirkungen des Klimawandels in gemäßigten und arktischen Regionen stärker bemerkbar machen.

Notes

Acknowledgments

We thank the following sources of funding for this work: Natural Sciences and Engineering Research Council (NSERC) of Canada (Discovery and Research Tools and Instruments grants to OPL, Canada Graduate Scholarship to CAM), Canada Research Chairs (CRC) program (OPL), Aboriginal Affairs and Northern Development Canada’s Northern Scientific Training Program (NSTP), the Polar Continental Shelf Program (PSCP), Bird Studies Canada’s James L. Baillie Memorial Fund (to the Canadian Snow Bunting Network), Environment Canada, and the University of Windsor. We also thank staff at the Canadian Bird Banding Office, members of the Canadian Snow Bunting Banding Network, and field crews at East Bay Island. Two anonymous reviewers provided helpful comments on an earlier version of this manuscript.

References

  1. Alatalo RV, Gustafsson L, Lundbkrg A (1984) Why do young passerine birds have shorter wings than older birds? Ibis 126:410–415. doi: 10.1111/j.1474-919X.1984.tb00264.x CrossRefGoogle Scholar
  2. Alerstam T (2006) Strategies for the transition to breeding in time-selected bird migration. Ardea 94:347–357Google Scholar
  3. Bai ML, Schmidt D (2012) Differential migration by age and sex in central European Ospreys Pandion haliaetus. J Ornithol 153:75–84CrossRefGoogle Scholar
  4. Bauboeck L, Miller-Rushing AJ, Primack RB, Evans TLL, Wasserman FE (2012) Climate change does not affect protandry in seven passerines in North America. Wilson J Ornithol 124:208–216CrossRefGoogle Scholar
  5. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83. doi: 10.1038/nature04539 CrossRefPubMedGoogle Scholar
  6. Bowlin MS and Wikelski M (2008) Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds. PLOS One 3:e2154. doi: 10.1371/journal.pone.0002154 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Canal D, Jovani R, Potti J (2012) Multiple mating opportunities boost protandry in a pied flycatcher population. Behav Ecol Sociobiol 66:67–76. doi: 10.1007/s00265-011-1253-8 CrossRefGoogle Scholar
  8. Coppack T, Pulido F (2009) Proximate control and adaptive potential of protandrous migration in birds. Integr Comp Biol 49:493–506. doi: 10.1093/icb/icp029 CrossRefPubMedGoogle Scholar
  9. Coppack T, Tøttrup AP, Spottiswoode C (2006) Degree of protandry reflects level of extrapair paternity in migratory songbirds. J Ornithol 147:260–265. doi: 10.1007/S10336-006-0067-3 CrossRefGoogle Scholar
  10. Cristol DA, Baker MB, Carbone C (1999) Differential migration revisited: latitudinal segregation by age and sex class. Curr Ornithol 15:33–67CrossRefGoogle Scholar
  11. Falconer CM, Mallory ML, Nol E (2008) Breeding biology and provisioning of nestling snow buntings in the Canadian High Arctic. Polar Biol 31:483–489CrossRefGoogle Scholar
  12. Fudickar AM, Wikelski M, Partecke J (2012) Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats. Methods Ecol Evol 3:47–52. doi: 10.1111/J.2041-210x.2011.00136.X CrossRefGoogle Scholar
  13. Gallinat AS, Primack RB, Wagner DL (2015) Autumn, the neglected season in climate change research. Trends Ecol Evol 30:169–176. doi: 10.1016/j.tree.2015.01.004 CrossRefPubMedGoogle Scholar
  14. Gienapp P, Reed TE, Visser ME (2014) Why climate change will invariably alter selection pressures on phenology. Proc Biol Sci 281:20141611. doi: 10.1098/rspb.2014.1611 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Goodenough AE, Fairhurst SM, Morrison JB, Cade M, Morgan PJ, Wood MJ (2015) Quantifying the robustness of first arrival dates as a measure of avian migratory phenology. Ibis 157:384–390. doi: 10.1111/ibi.12227 CrossRefGoogle Scholar
  16. Harnos A, Nora A, Kovacs S, Lang Z, Csoergo T (2015) Increasing protandry in the spring migration of the Pied Flycatcher (Ficedula hypoleuca) in Central Europe. J Ornithol 156:543–546. doi: 10.1007/s10336-014-1148-3 CrossRefGoogle Scholar
  17. Hedlund JSU, Jakobsson S, Kullberg C, Fransson T (2015) Long-term phenological shifts and intra-specific differences in migratory change in the willow warbler Phylloscopus trochilus. J Avian Biol 46:97–106. doi: 10.1111/jav.00484 CrossRefGoogle Scholar
  18. Hill GE (1989) Late spring arrival and dull nuptial plumage—aggression avoidance by yearling males. Anim Behav 37:665–673. doi: 10.1016/0003-3472(89)90045-6 CrossRefGoogle Scholar
  19. Holberton RL (1999) Changes in patterns of corticosterone secretion concurrent with migratory fattening in a neotropical migratory bird. Gen Comp Endocrinol 116:49–58. doi: 10.1006/gcen.1999.7336 CrossRefPubMedGoogle Scholar
  20. IPCC (2014) Climate Change 2014: Synthesis Report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, p 151Google Scholar
  21. Kokko H, Gunnarsson TG, Morrell LJ, Gill JA (2006) Why do female migratory birds arrive later than males? J Anim Ecol 75:1293–1303. doi: 10.1111/j.1365-2656.2006.01151.x CrossRefPubMedGoogle Scholar
  22. Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612. doi: 10.1111/j.2041-210X.2012.00185.x CrossRefGoogle Scholar
  23. Love OP, Macdonald C, McKinnon EA (2015) Canadian snow bunting banding network protocol 2012. figshare. doi: 10.6084/m9.figshare.1588581.v1
  24. Macdonald CA, Fraser KC, Gilchrist HG, Kyser TK, Fox JW, Love OP (2012) Strong migratory connectivity in a declining Arctic passerine. Animal Migration 1:23–30. doi: 10.2478/ami-2012-0003 CrossRefGoogle Scholar
  25. Macdonald CA, McKinnon EA, Gilchrist HG, Love OP (2015) Cold tolerance, and not earlier arrival on breeding grounds, explains why males winter further north in an Arctic-breeding songbird. J Avian Biol 46:001–009. doi: 10.1111/jav.00689 CrossRefGoogle Scholar
  26. Maggini I, Bairlein F (2012) Innate sex differences in the timing of spring migration in a songbird. PLoS One 7:e31271. doi: 10.1371/journal.pone.0031271 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Marra PP, Holmes RT (2001) Consequences of dominance-mediated habitat segregation in American Redstarts during the nonbreeding season. Auk 118:92–104CrossRefGoogle Scholar
  28. McKinnon EA et al (2013) Estimating geolocator accuracy for a migratory songbird using live ground-truthing in tropical forest. Animal Migr 1:31–38. doi: 10.2478/ami-2013-0001 Google Scholar
  29. McKinnon EA, Fraser KC, Stanley CQ, Stutchbury BJM (2014) Tracking from the Tropics reveals behaviour of juvenile songbirds on their first spring migration. PLoS One 9:e105605CrossRefPubMedPubMedCentralGoogle Scholar
  30. Meissner W (2015) Immature dunlins Calidris alpina migrate towards wintering grounds later than adults in years of low breeding success. J Ornithol 156:47–53. doi: 10.1007/s10336-014-1132-y CrossRefGoogle Scholar
  31. Meltofte H (1983) Arrival and pre-nesting period of the Snow Bunting Plectrophenax nivalis in east Greenland. Polar Res 1:185–198CrossRefGoogle Scholar
  32. Mills AM (2005a) Changes in the timing of spring and autumn migration in North American migrant passerines during a period of global warming. Ibis 147:259–269CrossRefGoogle Scholar
  33. Mills AM (2005b) Protogyny in autumn migration: Do male birds “play chicken”? Auk 122:71–81CrossRefGoogle Scholar
  34. Mitchell GW, Woodworth BK, Taylor PD, Norris DR (2015) Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird. Mov Ecol 3:19. doi: 10.1186/s40462-015-0046-5 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Moller AP (2004) Protandry, sexual selection and climate change. Glob Change Biol 10:2028–2035. doi: 10.1111/j.1365-2486.2004.00874.x CrossRefGoogle Scholar
  36. Montgomerie R, Lyon B (2011) Snow Bunting (Plectrophenax nivalis). Cornell Lab of Ornithology, Ithaca. doi: 10.2173/bna.198 Google Scholar
  37. Morbey YE, Ydenberg RC (2001) Protandrous arrival timing to breeding areas: a review. Ecol Lett 4:663–673CrossRefGoogle Scholar
  38. Newton I (2008) The migration ecology of birds. Academic Press, LondonGoogle Scholar
  39. R Development Core Team (2014) R: a language and environment for statistical computing, version 3.1.0 edn. R Foundation for Statistical Computing, ViennaGoogle Scholar
  40. Rainio K, Tottrup AP, Lehikoinen E, Coppack T (2007) Effects of climate change on the degree of protandry in migratory songbirds. Climate Rese 35:107–114. doi: 10.3354/cr00717 CrossRefGoogle Scholar
  41. Rappole JH, Tipton AR (1991) New harness design for attachment of radio transmitters to small passerines. Condor 62:335–337Google Scholar
  42. Saino N, Rubolini D, Serra L, Caprioli M, Morganti M, Ambrosini R, Spina F (2010) Sex-related variation in migration phenology in relation to sexual dimorphism: a test of competing hypotheses for the evolution of protandry. J Evol Biol 23:2054–2065. doi: 10.1111/j.1420-9101.2010.02068.x CrossRefPubMedGoogle Scholar
  43. Seewagen CL, Guglielmo CG, Morbey YE (2013) Stopover refueling rate underlies protandry and seasonal variation in migration timing of songbirds. Behav Ecol 24:634–642. doi: 10.1093/Beheco/Ars225 CrossRefGoogle Scholar
  44. Sergio F et al (2014) Individual improvements and selective mortality shape lifelong migratory performance. Nature 515:410–413. doi: 10.1038/nature13696 CrossRefPubMedGoogle Scholar
  45. Spottiswoode CN, Tøttrup AP, Coppack T (2006) Sexual selection predicts advancement of avian spring migration in response to climate change. Proc Roy Soc B Biol Sci 273:3023–3029. doi: 10.1098/Rspb.2006.3688 CrossRefGoogle Scholar
  46. Studds CE, Marra PP (2011) Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc Roy Soc B Biol Sci 278:3437–3443. doi: 10.1098/rspb.2011.0332 CrossRefGoogle Scholar
  47. Stutchbury BJM et al (2009) Tracking long-distance songbird migration by using geolocators. Science 323:896. doi: 10.1126/science.1166664 CrossRefPubMedGoogle Scholar
  48. Stutchbury BJM, Gow EA, Done T, MacPherson M, Fox JW, Afanasyev V (2011) Effects of post-breeding moult and energetic condition on timing of songbird migration into the tropics. Proc Roy Soc B Biol Sci 278:131–137. doi: 10.1098/Rspb.2010.1220 CrossRefGoogle Scholar
  49. Tarka M, Hansson B, Hasselquist D (2015) Selection and evolutionary potential of spring arrival phenology in males and females of a migratory songbird. J Evol Biol 28:1024–1038. doi: 10.1111/jeb.12638 CrossRefPubMedGoogle Scholar
  50. Thorup K, Tøttrup AP, Rahbek C (2007) Patterns of phenological changes in migratory birds. Oecologia 151:697–703. doi: 10.1007/S00442-006-0608-8 CrossRefPubMedGoogle Scholar
  51. Tonra CM, Marra PP, Holberton RL (2011) Early elevation of testosterone advances migratory preparation in a songbird. J Exp Biol 214:2761–2767. doi: 10.1242/Jeb.054734 CrossRefPubMedGoogle Scholar
  52. Tøttrup AP, Thorup K (2008) Sex-differentiated migration patterns, protandry and phenology in North European songbird populations. J Ornithol 149:161–167. doi: 10.1007/S10336-007-0254-X CrossRefGoogle Scholar
  53. Tøttrup AP, Thorup K, Rahbek C (2006) Changes in timing of autumn migration in North European songbird populations. Ardea 94:527–536Google Scholar
  54. Travers SE, Marquardt B, Zerr NJ, Finch JB, Boche MJ, Wilk R, Burdick SC (2015) Climate change and shifting arrival date of migratory birds over a century in the Northern Great Plains. Wilson J Ornithol 127:43–51CrossRefGoogle Scholar
  55. Wojczulanis-Jakubas K, Jakubas D, Foucher J, Dziarska-Palac J, Dugue H (2013) Differential autumn migration of the aquatic warbler Acrocephalus paludicola. Naturwissenschaften 100:1095–1098. doi: 10.1007/s00114-013-1108-4 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2016

Authors and Affiliations

  • Emily A. McKinnon
    • 1
  • C. M. Macdonald
    • 2
  • H. G. Gilchrist
    • 3
  • O. P. Love
    • 1
  1. 1.Department of Biological SciencesUniversity of WindsorWindsorCanada
  2. 2.Nature Conservancy of CanadaOttawaCanada
  3. 3.Environment Canada, National Wildlife Research CentreOttawaCanada

Personalised recommendations