Advertisement

Journal of Ornithology

, Volume 157, Issue 3, pp 663–669 | Cite as

Combining stable hydrogen (δ2H) isotopes and geolocation to assign Scaly-sided Mergansers to moult river catchments

  • Diana Solovyeva
  • Keith A. Hobson
  • Natalia Kharitonova
  • Jason Newton
  • James W. Fox
  • Vsevolod Afansyev
  • Anthony D. FoxEmail author
Original Article

Abstract

Scaly-sided Mergansers Mergus squamatus breed on freshwater rivers in Far East Russia, Korea, and China, wintering on similar habitat in China and Korea, but information on their post-breeding moulting habitats remains elusive. We combined analysis of stable hydrogen isotope ratios (δ2H) in flight feathers from nesting females equipped with geolocators to test whether we could correctly identify their use of moulting rivers (which show a strong north–south gradient in river water δ2H characteristics) based on feather δ2H values. The results are the first ever to demonstrate a strong positive correlation (r 2 = 0.91) between measured river catchment water δ2H and feather δ2H from birds of known moulting location (from geolocation) in an avian piscivorous species. Furthermore, our δ2H results overwhelmingly supported previous determinations based on feather δ13C and δ15N measurements from the same individuals confirming that most Scaly-sided Mergansers of both sexes moulted on freshwater, although four non-breeding and failed breeding females (out of 21) and one male (out of six) apparently undertook moult migration to brackish and marine waters. The single case where the δ2H results contradicted previous isotopic evidence was likely due to birds eating migratory fish of marine provenance that migrate up freshwater rivers. These results confirm the potential power of feather δ2H to assign piscivorous birds to specific river catchment moult sites and the utility of using multiple stable isotopes to assign birds to moult habitat and location in potentially complex estuarine and brackish situations or where migratory prey may be used by birds in freshwater habitats.

Keywords

Habitat use Primorye Remigial moult Deuterium Carbon-13 Nitrogen-15 

Zusammenfassung

Kombination von stabilen Wasserstoff-Isotopen (δ2H) und Geolokation zur Bestimmung der Mauserhabitate des Schuppensägers Mergus squamatus in Flusseinzugsgebieten

Schuppensäger (Mergus squamatus) brüten auf Süßwasserflüssen im fernen Osten Russlands, in Korea und China, und sie überwintern in ähnlichen Habitaten in China und Korea, aber Informationen über das Mauser-Habitat nach der Brut sind nur schwer zu erlangen. Wir kombinierten die Analyse von Isotopenverhältnissen stabiler Wasserstoff-Isotopen (δ2H) in Flugfedern nistender Weibchen mit Daten aus von den Weibchen getragenen Geolokatoren, um festzustellen, ob wir ihre Nutzung von Mauser-Flüssen anhand der δ2H-Werte aus den Federn korrekt identifizieren können (die Flüsse zeigen einen starken Nord-Süd-Gradienten in der δ2H-Charakteristik des Wassers). Die Ergebnisse zeigen erstmalig für eine piscivore Vogelart eine stark positive Korrelation zwischen dem δ2H des gemessenen Flusswassers und dem δ2H von Vögeln mit aufgrund der Geolokation bekanntem Mauser-Gebiet. Darüber hinaus bestätigen unsere δ2H-Ergebnisse hervorragend frühere Analysen auf Grundlage von δ13C- und δ15 N-Messungen aus Federn derselben Individuen, die bestätigen, dass die meisten Schuppensäger beiderlei Geschlechts auf Süßwasser mauserten, wobei allerdings vier nicht oder erfolglos brütende Weibchen (von 21) und ein Männchen (von 6) offenbar einen Mauserzug zu Brack- oder Seewasser unternommen haben. Der einzige Fall, in dem die δ2H-Ergebnisse früheren Isotopenbestimmungen widersprachen, hatte wahrscheinlich damit zu tun, dass die Vögel wandernde Seefische fraßen, die Süßwasserflüsse hinaufwandern. Diese Ergebnisse unterstreichen den möglichen Nutzen von δ2H-Messungen aus Federn, um piscivore Vögel einem bestimmten Flusseinzugsgebiet als Mauser-Habitat zuzuordnen, und sie bestätigen die Nützlichkeit des Gebrauchs mehrerer stabiler Isotope, um Vögel einem Mauserhabitat und einem Ort in möglicherweise komplexen estuarinen und brackigen Gegebenheiten zuzuordnen oder wenn wandernde Beute von Vögeln in Süßwasser-Habitaten gefressen wird.

Notes

Acknowledgments

We acknowledge financial support from the Rufford Small Grants (2003, 2004, 2006, and 2012), Wildfowl & Wetland Trust (2001–2013), Forestry Bureau, COA, Taiwan Government (2006–2013), and Doreen Fox (2007). Thanks to Sergey Vartanyan, Valery Shokhrin, George Chelnokov, and Ivan Bragin for invaluable help with fieldwork and Len Wassenaar for assistance with isotopic measurements at the National Water Research Institute in Saskatoon, Saskatchewan, Canada. Funding was provided by an operating grant to KAH from the National Science and Engineering Research Council (NSERC) of Canada. Thanks to two referees and the editors for help to improving earlier manuscripts.

Supplementary material

10336_2015_1319_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2791 kb)

References

  1. Ashley P, Hobson KA, Van Wilgenburg SL, North N, Petrie S (2010) Linking Canadian harvested juvenile American Black Ducks to their natal areas using stable isotope (δD, δ13C, and δ15N) methods. Avian Conserv Ecol 5(2):7Google Scholar
  2. Bearhop S, Fiedler W, Furness RW, Votier SC, Waldron S, Newton J, Bowen GJ, Berthold P, Farnsworth K (2005) Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310:502–504CrossRefPubMedGoogle Scholar
  3. Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143:337–348CrossRefPubMedGoogle Scholar
  4. Clark RG, Hobson KA, Wassenaar LI (2006) Geographic variation in the isotopic (δD, δ13C, δ15N, δ34S) composition of feathers and claws from lesser scaup and northern pintail: implications for studies of migratory connectivity. Can J Zool 84:1395–1401CrossRefGoogle Scholar
  5. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  6. Fox AD, Hobson KA, Kahlert J (2009) Isotopic evidence for differential endogenous protein contributions to Greylag Goose Anser anser flight feathers. J Avian Biol 40:108–112CrossRefGoogle Scholar
  7. Friedman I (1953) Deuterium content of natural waters and other substances. Geochim Cosmochim Acta 4:89–103CrossRefGoogle Scholar
  8. Graham CT, Harrison SSC, Harrod C (2014) Differences the contributions of dietary water to the hydrogen stable isotope ratios of cultured Atlantic salmon and Arctic charr tissues. Hydrobiologia 721:45–55CrossRefGoogle Scholar
  9. Guillemain M, van Wilgenburg SL, Legagneux P, Hobson KA (2014) Assessing geographic origins of Teal (Anas crecca) through stable-hydrogen (δ2H) isotope analyses of feathers and ring-recoveries. J Ornithol 155:165–172CrossRefGoogle Scholar
  10. Gunnarsson TG, Gill JA, Newton J, Potts PM, Sutherland WJ (2005) Seasonal matching of habitat quality and fitness in a migratory bird. Proc R Soc Lond B 272:2319–2323CrossRefGoogle Scholar
  11. Gunnarsson G, Latorre-Margalef N, Hobson KA, van Wilgenburg SL, Elmberg J, Olsen B, Waldenström J (2012) Disease dynamics and bird migration—linking mallards Anas platyrhynchos and influenza A virus in time and space. PLoS One 7:e35679CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hobson KA (2008) Applying isotopic methods to tracking animal movements. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration using stable isotopes. Academic Press, London, pp 45–78CrossRefGoogle Scholar
  13. Hobson KA, Wassenaar LI (eds) (2008) Tracking animal migration using stable isotopes. Academic Press, LondonGoogle Scholar
  14. Hobson KA, Atwell L, Wassenaar LI (1999) Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proc Nat Acad Sci 96:8003–8006CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hobson KA, Brua RB, Hohman WL, Wassenaar LI (2000) Low frequency of “double molt” of remiges in ruddy ducks revealed by stable isotopes: implications for tracking migratory waterfowl. Auk 117:129–135CrossRefGoogle Scholar
  16. Hobson KA, Bowen GJ, Wassenaar LI, Ferrand Y, Lormee H (2004a) Using stable isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 142:477–488CrossRefGoogle Scholar
  17. Hobson KA, Aubry Y, Wassenaar LI (2004b) Migratory connectivity in Bicknell’s Thrush: locating the missing populations using hydrogen isotopes. Condor 106:905–909CrossRefGoogle Scholar
  18. Hobson KA, Wunder MB, Van Wilgenburg SL, Clark RG, Wassenaar LI (2009) A method for investigating population declines of migratory birds using stable isotopes: origins of harvested lesser scaup in North America. PLoS One 4:e7915CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hobson KA, Barnett-Johnson R, Cerling T (2010) Using isoscapes to track animal migration. In: West J, Bowen GJ, Tu K, Dawson T (eds) Isoscapes: isotope mapping and its applications. Springer, New York, pp 273–298CrossRefGoogle Scholar
  20. Hobson KA, Van Wilgenburg SL, Piersma T, Wassenaar LI (2012a) Solving a migration riddle using isoscapes: House Martins from a Dutch village winter over West Africa. PLoS ONE 7(9):e45005CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hobson KA, van Wilgenburg SL, Wassenaar LI, Larson K (2012b) Linking hydrogen (δ2H) isotopes in feathers and precipitation: sources of variance and consequences for assignment to isoscapes. PLoS One 7:e35137CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hobson KA, Van Wilgenburg SL, Faaborg J, Toms JD, Rengifo C, Llanes Sosa A, Aubry Y, Brito R, Aguilar R (2014) Connecting breeding and wintering grounds of Neotropical migrant songbirds using stable hydrogen isotopes: a call for an isotopic atlas of migratory connectivity. J Field Ornithol 85:237–257CrossRefGoogle Scholar
  23. Kendall C, Coplen TB (2001) Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol Process 15:1363–1393CrossRefGoogle Scholar
  24. Kharitonova NA, Chelnokov GA, Bragin IV, Vakh EA (2012) Isotope composition of natural waters of the southern Far East, Russia. Russ J Pac Geol 3:75–86Google Scholar
  25. Knoche MJ, Powell AN, Quakenbush LT, Wooller MJ, Phillips LM (2007) Further evidence for site fidelity to wing molt locations by King Eiders: integrating stable isotope analyses and satellite telemetry. Waterbirds 30:52–57CrossRefGoogle Scholar
  26. Kolomiytsev NP (1992) Mergus squamatus biology in the Kiyevka Basin (S. Primorye). In: Sokolov VE (ed) Ornithological research in state reserves. Nauka, Moscow, pp 68–83 (In Russian) Google Scholar
  27. Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612CrossRefGoogle Scholar
  28. Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird using stable carbon isotopes. Science 282:1884–1886CrossRefPubMedGoogle Scholar
  29. Morrison RIG, Hobson KH (2004) Use of body stores in shorebirds after arrival on high-arctic breeding grounds. Auk 121:333–344CrossRefGoogle Scholar
  30. Newton I, Hobson KA, Fox AD, Marquiss M (2006) An investigation into the provenance of Northern Bullfinches Pyrrhula p. pyrrhula found in winter in Scotland and Denmark. J Avian Biol 37:431–435CrossRefGoogle Scholar
  31. Ostrom PH, Wiley AE, Rossman S, Stricker C, James HF (2014) Unexpected hydrogen isotope variation in oceanic pelagic seabirds. Oecologia 175:1227–1235CrossRefPubMedGoogle Scholar
  32. Procházka P, Hobson KA, Karcza Z, Kralj J (2008) Birds of a feather winter together: migratory connectivity in European reed warbler Acrocephalus scirpaceus populations. J Orn 149:141–150CrossRefGoogle Scholar
  33. Procházka P, van Wilgenburg S, Neto J, Yosef R, Hobson KA (2013) Using stable hydrogen isotopes (δ2H) and ring recoveries to trace natal origins in a Eurasian passerine with a migratory divide. J Avian Biol 44:1–10CrossRefGoogle Scholar
  34. Reshetnikov YS, Bogutskaya NG, Vasil’eva ED, Dorofeeva EA, Naseka AM, Popova OA, Savvaitova KA, Sideleva VG, Sokolov LI (1997) An annotated check-list of the freshwater fishes of Russia. J Ichthyol 37:687–736Google Scholar
  35. Ruegg KC, Anderson EC, Paxton KL, Apkenas V, Lao S, Siegel RB, DeSante DF, Moore F, Smith TB (2014) Mapping migration in a songbird using high-resolution genetic markers. Mol Ecol 23:5726–5739CrossRefPubMedGoogle Scholar
  36. Solovyeva DV, Afanasiev V, Fox JW, Shokhrin V, Fox AD (2012) Use of geolocators reveals previously unknown Chinese and Korean scaly-sided merganser wintering sites. Endanger Species Res 17:217–225CrossRefGoogle Scholar
  37. Solovyeva DV, Liu P, Antonov AI, Averin AA, Pronkevich VV, Shokhrin VP, Vartanyan SL, Cranswick PA (2014a) The population size and breeding range of the Scaly-sided Merganser Mergus squamatus. Bird Conserv Int 24:393–405CrossRefGoogle Scholar
  38. Solovyeva DV, Hobson K, Newton J, Fox JW, Afanasiev V, Fox AD (2014b) Marine moult migration of the freshwater Scaly-sided Merganser Mergus squamatus revealed by stable isotopes and geolocators. Ibis 156:466–471CrossRefGoogle Scholar
  39. Soto DX, Wassenaar LI, Hobson KA (2013) Stable hydrogen and oxygen isotopes in aquatic food webs are tracers of diet and provenance. Funct Ecol 27:535–543CrossRefGoogle Scholar
  40. Stutchbury BJM, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V (2009) Tracking long-distance songbird migration by using geolocators. Science 323:896CrossRefPubMedGoogle Scholar
  41. Wassenaar LI, Hobson KA (2003) Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isot Environ Health Stud 39:1–7CrossRefGoogle Scholar
  42. Wunder MB (2010) Using isoscapes to model probability surfaces for determining geographic origins. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes: understanding movement, pattern, and process on Earth through isotope mapping. Springer, New York, pp 251–269CrossRefGoogle Scholar
  43. Yerkes T, Hobson KA, Wassenaar LI, Macleod R, Coluccy JM (2008) Stable Isotopes (δD, δ13C, δ15N) reveal associations among geographic location and condition of Alaskan Northern Pintails. J Wildl Manag 72:715–725CrossRefGoogle Scholar
  44. Yohannes E, Hobson KH, Pearson DJ (2007) Feather stable-isotope profiles reveal stopover habitat selection and site fidelity in nine migratory species moving through sub-Saharan Africa. J Avian Biol 38:347–355Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Diana Solovyeva
    • 1
  • Keith A. Hobson
    • 2
  • Natalia Kharitonova
    • 3
  • Jason Newton
    • 4
  • James W. Fox
    • 5
  • Vsevolod Afansyev
    • 6
  • Anthony D. Fox
    • 7
    Email author
  1. 1.Institute of Biological Problems of the North FEB RAS 18MagadanRussia
  2. 2.Department of BiologyUniversity of Western OntarioLondonCanada
  3. 3.Faculty of GeologyLomonosov Moscow State UniversityMoscowRussia
  4. 4.NERC Life Sciences Mass Spectrometry FacilitySUERCEast KilbrideUK
  5. 5.Migrate Technology LtdCoton, CambridgeUK
  6. 6.British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
  7. 7.Department of BiosciencesAarhus UniversityRøndeDenmark

Personalised recommendations