Journal of Ornithology

, Volume 157, Issue 2, pp 549–564 | Cite as

First molecular study of prevalence and diversity of avian haemosporidia in a Central California songbird community

  • Erika L. Walther
  • Jenny S. Carlson
  • Anthony Cornel
  • Brett K. Morris
  • Ravinder N. M. Sehgal
Original Article


We studied avian haemosporidian parasites of the genera Plasmodium, Haemoproteus and Leucocytozoon in a riparian songbird community in Central California, USA, over a period of 2 years. We sequenced a well-characterized region of the mitochondrial cytochrome b gene to identify the prevalence and diversity of these parasites from 399 birds. Of the 39.8 % of birds infected with haemosporidian parasites, most (30.8 %) were infected with Plasmodium. We identified 35 lineages, including 13 from the Plasmodium genus, 12 from Haemoproteus, and 10 from Leucocytozoon, 14 of which were novel lineages. In addition, we provide the first report of haemosporidian infections in 13 host species. Plasmodium prevalence ranged widely among host species from 0.0 to 68.6 %. We identified 2 Plasmodium lineages that were generalists, infecting multiple species across several families. One Plasmodium species, P. homopolare, was found in 84 individual birds representing 9 host species from 5 families, but primarily from Emberizidae. This is the first avian haemosporidian study utilizing molecular methods in California, which increases our understanding of the diversity and prevalence of avian haemosporidia affecting Passeriformes in this region and beyond.


Haemosporidia Plasmodium homopolare Cytochrome b California Passeriformes 


Erste molekulare Studie zu Prävalenz und Diversität von Vogel-Hämosporidien einer Singvogelgemeinschaft in Zentral-Kalifornien

Wir untersuchten zwei Jahre lang Vogel-Hämosporidien der Gattungen Plasmodium, Haemoproteus und Leucocytozoon in einer Auwaldsingvogelgemeinschaft in Zentral-Kalifornien, USA. Mittels Sequenzierung einer gut charakterisierten Region des mitochondrialen Cytochrom-b-Gene haben wir die Prävalenz und Diversität dieser Malariaparasiten von 399 Vögeln ermittelt. Von den 39,8 % mit Hämosporidien infizierten Vögeln waren die meisten (30,8 %) mit Plasmodium befallen. Wir identifizierten 35 Linien, wovon 13 der Gattung Plasmodium angehörten, 12 der Gattung Haemoproteus und 10 der Gattung Leucocytozoon. 14 Linien waren bisher unbekannt. Erstmalig wurden 13 Arten auf ihren Hämosporidienbefall geprüft. Die Prävalenz mit Plasmodium betrug zwischen 0 und 68,6 %. Zwei der Plasmodium Linien waren Generalisten, die mehrere Vögel-Arten bzw. Familien infizierten. Einer dieser Generalisten, P. homopolare, wurde in 84 Individuen von neun Arten aus fünf Familien nachgewiesen, vornehmlich aber Emberizidae. Diese Studie ist die erste, die molekulare Methoden zum Nachweis von Hämosporidien in Vögeln in Kalifornien verwendete. Diese Ergebnisse erweitern unsere Kenntnis zu Diversität und Prävalenz von Vogel-Hämosporidiena bei Passeriformes in der Region und darüber hinaus.



This work was supported by a grant from the San Francisco State University Arthur Nelson Scholarship and the San Francisco State University Instructionally Related Activities Grant. The authors wish to thank the County of Fresno and the Consolidated Mosquito Abatement District for access to the field site and the Kearney Agricultural Research and Extension (KARE) Center in Parlier, California, for providing lodging. We thank Annette Chan (SFSU staff) for microscopy assistance, Greg Spicer and Andrea Swei (SFSU faculty) for phylogenetics and R statistical software expertise, respectively; Elvin Lauron for laboratory assistance; and, Tija Altergott, Holly Archer, Doug Bell, Molly Dodge, Sierra Flynn, Ariana LaPorte, Leonard Liu, Claire Loiseau, Tim Marzec, Allison Nelson, Katherine Purcell, Elaine Vo and Laura Wilkinson for assistance with data collection in the field.

Compliance with ethical standards

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The bird sampling methodology was approved by the Institutional Animal Care and Use Committee (IACUC) and was performed under permits supplied by the United States Geological Survey Bird Banding Laboratory and a Scientific Collecting Permit issued by the California Natural Resources Agency, Department of Fish and Game.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Atkinson CT (2008) Haemoproteus, Avian malaria. In: Atkinson CT, Thomas NJ, Hunter DB (eds) Parasitic diseases of wild birds. Wiley, Iowa, pp 13–53CrossRefGoogle Scholar
  2. Atkinson CT, Dusek RJ, Lease JK (2001a) Serological responses and immunity to superinfection with avian malaria in experimentally-infected Hawaii Amakihi. J Wildl Dis 37:20–27CrossRefPubMedGoogle Scholar
  3. Atkinson CT, Lease JK, Drake BM, Shema NP (2001b) Pathogenicity, serological responses, and diagnosis of experimental and natural malarial infection in native Hawaiian thrushes. Condor 103:209–218CrossRefGoogle Scholar
  4. Beadell JS, Gering E, Austin J, Dumbacher JP, Peirce MA, Pratt TK, Atkinson CT, Fleischer RC (2004) Prevalence and differential host-specificity of two avian blood parasite genera in the Australo–Papuan region. Mol Ecol 3:3829–3844CrossRefGoogle Scholar
  5. Bennett GF, Garnham PCC, Fallis AM (1965) On the status of the genera Leucocytozoon Siemann, 1898 and Haemoproteus Kruse, 1890 (Haemosporidia: Leucocytozoidae and Haemoproteidae). Ibidem 43:927–932Google Scholar
  6. Bensch S, Stjernman M, Hasselquist D et al (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589CrossRefGoogle Scholar
  7. Bensch S, Perez-Tris J, Waldenstrom J, Hellgren D (2004) Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation. Evolution 58:1617–1621Google Scholar
  8. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol 9:1353–1358CrossRefGoogle Scholar
  9. Bolker BM (2008) Ecological models and data in R. Princeton University Press, PrincetonGoogle Scholar
  10. Cannell BL, Krasnec KV, Campbell K, Jones HI, Miller RD, Stephens N (2013) The pathology and pathogenicity of a novel Haemoproteus spp. infection in wild little penguins (Eudyptula minor). Vet Parasitol 197(1–2):74–84. doi: 10.1016/j.vetpar.2013.04.025 CrossRefPubMedGoogle Scholar
  11. Carlson JS, Martinez-Gomez JE, Valkiūnas G, Loiseau C, Bell DA, Sehgal R (2013) Diversity and phylogenetic relationships of haemosporidian parasites in birds of Socorro Island, Mexico, and their role in the re-introduction of the Socorro Dove (Zenaida graysoni). J Parasitol 99:270–276CrossRefPubMedGoogle Scholar
  12. Carlson JS, Walther EL, Trout Fryxell R, Staley S, Tell LA, Seghal RNM, Barker CM, Cornel AJ (2015) Identifying avian malaria vectors: sampling methods influence outcomes. Parasite Vector 8(1):1–16CrossRefGoogle Scholar
  13. Clark GW, Swinehart B (1966) Blood protozoa of passerine birds of the Sacramento (Calif.) region. Bull Wildl Dis Assoc 2:53–54CrossRefGoogle Scholar
  14. Clark NJ, Clegg SM, Lima MR (2014) A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): new insights from molecular data. Int J Parasitol 44(5):329–338CrossRefPubMedGoogle Scholar
  15. Cornelius EA, Davis AK, Altizer SA (2014) How important are haemoparasites to migratory songbirds? Evaluating physiological measures and infection status in three neotropical migrants during stopover. Physiol Biochem Zool 87:719–728CrossRefPubMedGoogle Scholar
  16. Dimitrov D, Palinauskas V, Iezhova TA, Bernotienė R, Ilgūnas M, Bukauskaitė D, Zehtindjiev P et al (2015) Plasmodium spp.: an experimental study on vertebrate host susceptibility to avian malaria. Exp Parasitol 148:1–16CrossRefPubMedGoogle Scholar
  17. Dodge M, Guers SL, Sekercioğlu C, Sehgal RNM (2013) North American transmission of haemosporidian parasites in the Swainson’s Thrush (Catharus ustulatus), a migratory songbird. J Parasitol 99:548–553CrossRefPubMedGoogle Scholar
  18. Fallon SM, Ricklefs RE (2008) Parasitemia in PCR-detected Plasmodium and Haemoproteus infection in birds. J Avian Biol 39:514–522CrossRefGoogle Scholar
  19. Fallon SM, Bermingham E, Ricklefs RE (2003) Island and taxon effects in parasitism revisited: avian malaria in the Less Antilles. Evolution 57:606–615CrossRefPubMedGoogle Scholar
  20. Fecchio A, Lima MR, Svensson-Coelho M, Marini MA, Ricklefs RE (2013) Structure and organization of an avian haemosporidian assemblage in a Neotropical savannah in Brazil. Parasitology 140:181–192CrossRefGoogle Scholar
  21. Galtier N, Gouy M, Gautier C (1996) SEAVIEWandPHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548PubMedGoogle Scholar
  22. Garamszegi LZ (2010) The sensitivity of microscopy and PCR-based detection methods affecting estimates of prevalence of blood parasites in birds. J Parasitol 96(6):1197–1203CrossRefPubMedGoogle Scholar
  23. Garnham PCC (1966) Malaria parasites and other Haemosporidia. Blackwell, OxfordGoogle Scholar
  24. Gonzalez AD, Lotta IA, Garcia LF, Moncada LI, Matta NE (2015) Avian haemosporidians from Neotropical highlands: Evidence from morphological and molecular data. Parasitol Int 64(4):48–59CrossRefPubMedGoogle Scholar
  25. Greiner EC, Bennett GF, White EM, Coombs RF (1975) Distribution of the avian hematozoa of North America. Can J Zool 53:1762–178CrossRefPubMedGoogle Scholar
  26. Hellgren O (2005) The occurrence of haemosporidian parasites in the Fennoscandian bluethroat (Luscinia svecica) population. J Ornithol 146:55–60Google Scholar
  27. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J Parasitol 90:797–802CrossRefPubMedGoogle Scholar
  28. Herman CM, Reeves WC, McClure HE, French EM, Hammon W (1954) Studies on avian malaria in vectors and hosts of encephalitis in Kern County, CA: infections in avian hosts. Am J Trop Med Hyg 3:676–695PubMedGoogle Scholar
  29. Herms WB, Kadner CG, Galindo P, Armstrong DF (1939) Blood parasites of California birds. J Parasitol 25(6):511–512CrossRefGoogle Scholar
  30. Ishtiaq F, Gering E, Rappole JH, Rahmani AR, Jhala YV, Dove CJ, Milensky C, Olson SL, Peirce MA, Fleischer RC (2007) Prevalence and diversity of avian hematozoan parasites in Asia: a regional survey. J Wild Dis 43(3):382–398CrossRefGoogle Scholar
  31. Jarvi SI, Schultz JJ, Atkinson CT (2002) PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88:153–188CrossRefPubMedGoogle Scholar
  32. Jasper WC, Linksvayer TA, Atallah J, Friedman D, Chiu JC, Johnson BR (2014) Large scale coding sequence change underlies the evolution of post-developmental novelty in honey bees. Mol Biol Evol 10.1093/molbev/msu292Google Scholar
  33. Jovani R, Tella JL (2006) Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol 22:214–218CrossRefPubMedGoogle Scholar
  34. Knowles SCL, Wood MJ, Alves R, Wilkin TA, Bensch S, Sheldon BC (2011) Molecular epidemiology of malaria prevalence and parasitemias in a wild bird population. Mol Ecol 20:1062–1076CrossRefPubMedGoogle Scholar
  35. Lachish S, Knowles SCL, Alves R, Wood MJ, Sheldon BC (2011) Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J Anim Ecol 80:1207–1216CrossRefPubMedGoogle Scholar
  36. Lauron EJ, Loiseau C, Bowie RCK, Spicer G, Smith TB, Melo M, Sehgal RNM (2014) Coevolutionary patterns and diversification of avian malaria parasites in African sunbirds (Family Nectariniidae). Parasitology. doi: 10.1017/S0031182014001681 PubMedGoogle Scholar
  37. Loiseau C, Harrigan RJ, Cornel AJ, Guers SL, Dodge M, Marzec T, Carlson JS, Seppi B, Sehgal RNM (2012) First evidence and predictions of Plasmodium transmission in Alaskan bird populations. PLoS ONE 7:e44729CrossRefPubMedPubMedCentralGoogle Scholar
  38. Martinson ES, Blumberg BJ, Eisen RJ, Schall JJ (2008) Avian haemosporidian parasites from northern California oak woodland and chaparral habitats. J Wildl Dis 44:260–268CrossRefGoogle Scholar
  39. Møller AP, Erriyzøe J (1998) Host immune defence and migration in birds. Evol Ecol 12:945–953CrossRefGoogle Scholar
  40. Njabo KY, Cornel AJ, Bonneaud C, Toffelmier E, Sehgal RNM, Valkiūnas G, Russell AF, Smith TB (2010) Nonspecific patterns of vector, host and avian malaria parasite associations in a central African rainforest. Mol Ecol 20:1049–1060CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nylander JAA, Ronquist JP, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67CrossRefPubMedGoogle Scholar
  42. Outlaw DC, Ricklefs RE (2014) Species limits in avian malaria parasites (Haemosporida): how to move forward in the molecular era. Parasitology 141(10):1223–1232CrossRefPubMedGoogle Scholar
  43. Palinauskas V, Valkiūnas G, Bolshakov CV, Bensch S (2008) Plasmodium relictum (lineage P-SGS1): effects on experimentally infected passerine birds. Exp Parasitol 120:372–380CrossRefPubMedGoogle Scholar
  44. Palinauskas V, Žiegyte R, Ilgūnas M, Iezhova TA, Bernotiene R, Bolshakov C, Valkiūnas G (2015) Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes. Int J Parasitol 45:51–62Google Scholar
  45. Pérez-Tris J, Bensch S (2005) Dispersal increases local transmission of avian malarial parasites. Ecol Lett 8:838–845CrossRefGoogle Scholar
  46. Perkins SL (2014) Malaria’s many mates: past, present and future of the systematics of the order haemosporidia. J Parasitol 100:11–25CrossRefPubMedGoogle Scholar
  47. Richard FA, Sehgal RNM, Jones HI, Smith TB (2002) A comparative analysis of PCR-based detection methods for avian malaria. J Parasitol 88:819–822CrossRefPubMedGoogle Scholar
  48. Ricklefs RE, Fallon SM (2002) Diversification and host switching in avian malaria parasites. Proc R Soc Lond B 269:885–892CrossRefGoogle Scholar
  49. Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Syst Biol 52:111–119CrossRefGoogle Scholar
  50. Ricklefs RE, Swanson BL, Fallon SM, Martinez-Abraín A, Scheuerlein A, Gray J, Latta SC (2005) Community relationships of avian malaria parasites in Southern Missouri. Ecol Monogr 75:543–559CrossRefGoogle Scholar
  51. Ricklefs RE, Outlaw DC, Svensson-Coelho M, Medeiros MCI, Ellis VA, Latta S (2014) Species formation by host shifting in avian malaria parasites. Proc Natl Acad Sci USA 111:14816–14821CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  53. Sehgal RNM, Lovette IJ (2003) Molecular evolution of three avian neurotrophin genes: implications for proregion functional constraints. J Mol Evol 57:335–342CrossRefPubMedGoogle Scholar
  54. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  55. Super PE, van Riper C (1995) A comparison of avian hematozoan epizootiology in two California coastal scrub communities. J Wildl Dis 31:447–461CrossRefPubMedGoogle Scholar
  56. Svensson-Coelho M, Blake JG, Loiselle BA, Penrose AS, Parker PG, Ricklefs RE (2013) Diversity, prevalence, and host specificity of avian Plasmodium and Haemoproteus in a western Amazon assemblage. Ornithol Monogr 76:1–47CrossRefGoogle Scholar
  57. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC, Boca RatonGoogle Scholar
  58. Valkiūnas G, Bensch S, Iezhova TA, Križanauskienė A, Hellgren O, Bolshakov CV (2006) Nested cytochrome b polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: microscopy is still essential. J Parasitol 92(2):418–422CrossRefPubMedGoogle Scholar
  59. Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Sehgal RNM, Bensch S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol 94:1395–1401CrossRefPubMedGoogle Scholar
  60. Valkiūnas G, Ashford RW, Bensch S, Killick-Kendrick R, Perkins S (2011) A cautionary note concerning Plasmodium in apes. Trends Parasitol 27(6):231–232CrossRefPubMedGoogle Scholar
  61. Valkiūnas G, Palinauskas V, Ilgūnas M, Bukauskaitė D, Dimitrov D, Bernotienė R, Zehtindjiev P, Ilieva M, Iezhova TA (2014) Molecular characterization of five widespread avian haemosporidian parasites (Haemosporida), with perspectives on the PCR-based detection of haemosporidians in wildlife. Parasitol Res 113:2251–2263CrossRefPubMedGoogle Scholar
  62. Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 11:1545–1554CrossRefPubMedGoogle Scholar
  63. Waldenström J, Bensch S, Hasselquist D, Östman Ö (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194CrossRefPubMedGoogle Scholar
  64. Walther EL, Valkiūnas G, González AD, Matta NE, Ricklefs RE, Cornel A, Sehgal RNM (2014) Description, molecular characterization, and patterns of distribution of a widespread New World avian malaria parasite (Haemosporida: Plasmodiidae), Plasmodium (Novyella) homopolare sp. nov. Parasitol Res 113:3319–3332CrossRefPubMedGoogle Scholar
  65. Wood FD, Wood SF (1937) Occurrence of haematozoa in some California birds and mammals. J Parasitol 23:197–201CrossRefGoogle Scholar
  66. Zehtindjiev P, Ilieva M, Westerdahl H, Hansson B, Valkiūnas G, Bensch S (2008) Dynamics of parasitemias of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler, Acrocephalus arundinaceus. Exp Parasitol 119:99–110CrossRefPubMedGoogle Scholar
  67. Žiegytė R, Valkiūnas G (2014) Recent advances in vector studies of avian haemosporidian parasites. Ekologija 60(4):73–83Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Erika L. Walther
    • 1
  • Jenny S. Carlson
    • 2
  • Anthony Cornel
    • 2
  • Brett K. Morris
    • 1
  • Ravinder N. M. Sehgal
    • 1
  1. 1.Department of BiologySan Francisco State UniversitySan FranciscoUSA
  2. 2.Mosquito Research Control Laboratory, Department of Entomology and NematologyUniversity of CaliforniaParlierUSA

Personalised recommendations