Advertisement

Journal of Ornithology

, Volume 157, Issue 2, pp 505–513 | Cite as

Complete mitochondrial genomes render the Night Heron genus Gorsachius non-monophyletic

  • Xiaoping Zhou
  • Chengte Yao
  • Qingxian Lin
  • Wenzhen Fang
  • Xiaolin Chen
Original Article

Abstract

In the present study, the complete mitochondrial genomes of three Night Herons from the genus Gorsachius were sequenced. All the complete mitochondrial genomes in this genus exhibit duplications in the region between cytochrome b and 12S ribosomal RNA. In Gorsachius magnificus, the duplicated regions span from the last 108 base pairs of cytochrome b to the control region, which are nearly identical to each other in nucleotide sequences, suggesting they are evolving in concert. In G. goisagi and G. melanolophus, the duplicated control regions were nearly identical in majority portions within each individual, while the first tRNA Pro -ND6-tRNA Glu and the second Cytb-tRNA Thr regions have degenerated into non-coding regions. Phylogenetic analyses with Bayesian inference and maximum likelihood based on the nucleotide sequences of two ribosomal RNA genes and 12 protein coding genes indicate that G. magnificus is not monophyletic with the other two Gorsachius species. These new results provide the fundamental basis for further studies to elucidate their phylogenetic positions and relationships with other genera within the subfamily Ardeinae.

Keywords

Mitochondrial genome Phylogenetic relationship Gorsachius Night Heron Ardeinae 

Zusammenfassung

Vollständiges mitochondriales Genom ergibt Nicht-Monophylie der Nachtreiher-Gattung Gorsachius In der vorliegenden Studie wurde das vollständige mitochondriale Genom von drei Nachtreiherarten der Gattung Gorsachius sequenziert. Alle mitochondrialen Genome dieser Gattung wiesen Duplikationen in der Region zwischen Cytochrome b und 12S der ribosomalen RNA auf. Bei G. magnificus umfassten die duplizierten Regionen die letzten 108 Basenpaare von Cytochrome b bis zur Kontrollregion, die nahezu identisch sind in ihren Nukleotidsequenzen. Dies deutet auf eine gemeinsame Entwicklung hin. Bei G. goisagi und G. melanolophus waren die mehrheitlichen Anteile der duplizierten Kontrollregionen nahezu bei jedem Individuum identisch, während die ersten tRNAPro-ND6-tRNAGlu und die zweiten CytbtRNAThr Regionen zu nicht-kodierenden Regionen degeneriert waren. Phylogenetische Analysen mittels Bayes-Inferenz und Maximum Likelihood Schätzung, die auf den Nukleotidsequenzen zweier ribosomaler RNA Gene und 12 Protein kodierender Gene basierten, zeigten, dass G. magnificus nicht der gleichen Stammform entstammt wie die beiden anderen Gorsachius-Arten. Diese neuen Erkenntnisse liefern die fundamentale Basis für weitere Studien zur Aufklärung phylogenetischer Positionen und Verwandtschaftsverhältnisse mit anderen Gattungen innerhalb der Unterfamilie der Ardeinae.

Notes

Acknowledgments

We thank the Jiulingshan National Reserve in Jiangxi and the Endemic Species Research Institute in Taiwan, for help in providing the tissue samples for this study. This research was supported by the National Natural Science Foundation of China (Grant Nos. 31000963, 41476113 and 31272333) and by the Fujian Natural Science Foundation of China (2010Y2007).

Supplementary material

10336_2015_1297_MOESM1_ESM.pdf (165 kb)
Supplementary material 1 (PDF 164 kb) Alignments of the duplicated CRs in Gorsachius. Dots indicate identity of nucleotides to the reference sequence, and dashes indicate gaps. Underlined nucleotides indicate the conserved motifs characteristic for the avian CR. The red and blue nucleotides indicate the sequences are more similar between G. goisagi and G. melanolophus orthologs than between paralogs within species. The gray-shaded nucleotides indicate the repeats.

References

  1. Abbott CL, Double MC, Trueman JW, Robinson A, Cockburn A (2005) An unusual source of apparent mitochondrial heteroplasmy: duplicate mitochondrial control regions in Thalassarche albatrosses. Mol Ecol 14:3605–3613. doi: 10.1111/j.1365-294X.2005.02672.x CrossRefPubMedGoogle Scholar
  2. Avise JC (1994) Molecular markers: natural history and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  3. Bensch S, Harlid A (2000) Mitochondrial genomic rearrangements in songbirds. Mol Biol Evol 17:107–113. doi: 10.1093/oxfordjournals.molbev.a026223 CrossRefPubMedGoogle Scholar
  4. Bock WJ (1956) A generic review of the family Ardeidae (Aves). Am Mus Novit 1779:1–49Google Scholar
  5. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780. doi: 10.1093/nar/27.8.1767 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334 CrossRefPubMedGoogle Scholar
  7. Clayton DA (1992) Transcription and replication of animal mitochondrial DNAs. Int Rev Cytol 141:217–232. doi: 10.1016/S0074-7696(08)62067-7 CrossRefPubMedGoogle Scholar
  8. Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol 212:599–634. doi: 10.1016/0022-2836(90)90225-B CrossRefPubMedGoogle Scholar
  9. Eberhard JR, Wright TF, Bermingham E (2001) Duplication and concerted evolution of the mitochondrial control region in the parrot genus Amazona. Mol Biol Evol 18:1330–1342CrossRefPubMedGoogle Scholar
  10. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fellowes JR, Fang Z, Shing LK, Hau BCH, Lau MWN, Lam VWY, Young L, Hafner H (2001) Status update on white-eared night heron Gorsachius magnificus in South China. Bird Conserv Int 11:101–111. doi: 10.1017/S0959270901000193 CrossRefGoogle Scholar
  12. Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D (2007) Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol Biol Evol 24:269–280. doi: 10.1093/molbev/msl158 CrossRefPubMedGoogle Scholar
  13. Gibb GC, Kennedy M, Penny D (2013) Beyond phylogeny: pelecaniform and ciconiiform birds, and long-term niche stability. Mol Phylogenet Evol 68:229–238. doi: 10.1016/j.ympev.2013.03.021 CrossRefPubMedGoogle Scholar
  14. Gill F, Donsker D (2015) IOC world bird list (v 5.2). Available at: http://www.worldbirdnames.org. Accessed 1 Feb 2015
  15. Haddrath O, Baker AJ (2001) Complete mitochondrial DNA genome sequences of extinct birds: ratite phylogenetics and the vicariance biogeography hypothesis. Proc R Soc Lond B 268:939–945. doi: 10.1098/rspb.2001.1587 CrossRefGoogle Scholar
  16. Haring E, Kruckenhauser L, Gamauf A, Riesing MJ, Pinsker W (2001) The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors. Mol Biol Evol 18:1892–1904. doi: 10.1093/oxfordjournals.molbev.a003730 CrossRefPubMedGoogle Scholar
  17. Hu JH, Liu Y (2014) Unveiling the conservation biogeography of a data-deficient endangered bird species under climate change. PLoS ONE 9(1):e84529. doi: 10.1371/journal.pone.0084529 CrossRefPubMedPubMedCentralGoogle Scholar
  18. IUCN (2014) The IUCN red list of threatened species. Version 2014.3. Available at http://www.iucnredlist.org. Accessed 1 Feb 2015
  19. Kawakami K, Fujita M, Hasegawa M, Makihara H (2011) Dietary characteristics of the Malayan night heron (Gorsachius melanolophus) in the Yaeyama Islands, southern Japan. Chin Birds 2:87–93. doi: 10.5122/cbirds.2011.0015 CrossRefGoogle Scholar
  20. King B (2005) Vocalisation of the white-eared night heron Gorsachius magnificus. Forktail 21:177Google Scholar
  21. Kurabayashi A, Sumida M, Yonekawa H, Glaw F, Vences M, Hasegawa M (2008) Phylogeny, recombination, and mechanisms of stepwise mitochondrial genome reorganization in mantellid frogs from Madagascar. Mol Biol Evol 25:874–891. doi: 10.1093/molbev/msn031 CrossRefPubMedGoogle Scholar
  22. Kushlan JA, Hancock JA (2005) Herons (Ardeidae) (Bird Families of the World). Oxford University Press, OxfordGoogle Scholar
  23. Lanfear R, Calcott B, Ho SY, Guindon S (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701. doi: 10.1093/molbev/mss020 CrossRefPubMedGoogle Scholar
  24. Li BC, Jing PP, Ding P (2007) First breeding observations and a new locality record of white-eared night-heron Gorsachius magnificus in southeast China. Waterbirds 30:301–304. doi:10.1675/1524-4695(2007)30[301:fboaan]2.0.co;2Google Scholar
  25. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:0955–0964. doi: 10.1093/nar/25.5.0955 CrossRefGoogle Scholar
  26. McCracken KG, Sheldon FH (1997) Avian vocalizations and phylogenetic signal. Proc Natl Acad Sci USA 94:3833–3836CrossRefPubMedPubMedCentralGoogle Scholar
  27. McCracken KG, Sheldon FH (1998) Molecular and osteological heron phylogenies: sources of incongruence. Auk 115:127–141. doi: 10.2307/4089118 CrossRefGoogle Scholar
  28. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proc Gatew Comput Environ Work. doi: 10.1109/GCE.2010.5676129
  29. Mindell DP, Sorenson MD, Dimcheff DE (1998a) An extra nucleotide is not translated in mitochondrial ND3 of some birds and turtles. Mol Biol Evol 15:1568–1571. doi: 10.1093/oxfordjournals.molbev.a025884 CrossRefPubMedGoogle Scholar
  30. Mindell DP, Sorenson MD, Dimcheff DE (1998b) Multiple independent origins of mitochondrial gene order in birds. Proc Natl Acad Sci USA 95:10693–10697CrossRefPubMedPubMedCentralGoogle Scholar
  31. Oh H, Kim Y, Kim N (2010) First breeding record of Japanese night heron Gorsachius goisagi in Korea. Ornithol Sci 9:131–134CrossRefGoogle Scholar
  32. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474. doi: 10.1038/290470a0 CrossRefPubMedGoogle Scholar
  33. Payne RB, Risley CJ (1976) Systematics and evolutionary relationships among the herons (Ardeidae). Mus Zool Univ Michigan Misc Publ 150:1–115Google Scholar
  34. Peters JL (1931) Check-list of birds of the world. Harvard University Press, CambridgeGoogle Scholar
  35. Pilgrim JD, Walsh DF, Tran TT, Nguyen DT, Eames JC, Le MH (2009) The endangered white-eared night heron Gorsachius magnificus in Vietnam: status, distribution, ecology and threats. Forktail 25:142–146Google Scholar
  36. Quinn TW, Wilson AC (1993) Sequence evolution in and around the mitochondrial control region in birds. J Mol Evol 37:417–425. doi: 10.1007/BF00178871 CrossRefPubMedGoogle Scholar
  37. Rambaut A, Suchard M, Xie D, Drummond A (2014) Tracer v1. 6. Available at http://beast.bio.ed.ac.uk/Tracer
  38. Ramirez V, Savoie P, Morais R (1993) Molecular characterization and evolution of a duck mitochondrial genome. J Mol Evol 37:296–310. doi: 10.1007/BF00175506 CrossRefPubMedGoogle Scholar
  39. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ruokonen M, Kvist L (2002) Structure and evolution of the avian mitochondrial control region. Mol Phylogenet Evol 23:422–432. doi: 10.1016/S1055-7903(02)00021-0 CrossRefPubMedGoogle Scholar
  41. Sammler S, Bleidorn C, Tiedemann R (2011) Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination. BMC Genom 12:35. doi: 10.1186/1471-2164-12-35 CrossRefGoogle Scholar
  42. Sammler S, Ketmaier V, Havenstein K, Tiedemann R (2013) Intraspecific rearrangement of duplicated mitochondrial control regions in the Luzon Tarictic Hornbill Penelopides manillae (Aves: Bucerotidae). J Mol Evol 77:199–205. doi: 10.1007/s00239-013-9591-y CrossRefPubMedGoogle Scholar
  43. Schirtzinger EE, Tavares ES, Gonzales LA, Eberhard JR, Miyaki CY, Sanchez JJ, Hernandez A, Mueller H, Graves GR, Fleischer RC, Wright TF (2012) Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes. Mol Phylogenet Evol 64:342–356. doi: 10.1016/j.ympev.2012.04.009 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sheldon FH (1987) Phylogeny of herons estimated from DNA–DNA hybridization data. Auk 104:97–108. doi: 10.2307/4087238 CrossRefGoogle Scholar
  45. Sheldon FH, Jones CE, McCracken KG (2000) Relative patterns and rates of evolution in heron nuclear and mitochondrial DNA. Mol Biol Evol 17:437–450CrossRefPubMedGoogle Scholar
  46. Singh TR, Shneor O, Huchon D (2008) Bird mitochondrial gene order: insight from 3 warbler mitochondrial genomes. Mol Biol Evol 25:475–477. doi: 10.1093/molbev/msn003 CrossRefPubMedGoogle Scholar
  47. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Treutlein TL, Gonzalez J, Wink M (2015) Phylogeny of water birds inferred from mitochondrial DNA sequences of nine protein coding genes. PeerJ. doi: 10.7287/peerj.preprints.272v1 Google Scholar
  50. Verkuil YI, Piersma T, Baker AJ (2010) A novel mitochondrial gene order in shorebirds (Scolopacidae, Charadriiformes). Mol Phylogenet Evol 57:411–416. doi: 10.1016/j.ympev.2010.06.010 CrossRefPubMedGoogle Scholar
  51. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216. doi: 10.1016/S0074-7696(08)62066-5 CrossRefPubMedGoogle Scholar
  52. Zhou X, Lin Q, Fang W, Chen X (2014) The complete mitochondrial genomes of sixteen ardeid birds revealing the evolutionary process of the gene rearrangements. BMC Genom 15:573. doi: 10.1186/1471-2164-15-573 CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  1. 1.Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and EcologyXiamen UniversityXiamenChina
  2. 2.Endemic Species Research Institute, Council of AgricultureTaiwanChina

Personalised recommendations