Advertisement

Journal of Ornithology

, Volume 157, Issue 1, pp 363–370 | Cite as

Northern Goshawk (Accipiter gentilis) may improve Black Grouse breeding success

  • Risto TornbergEmail author
  • Seppo Rytkönen
  • Panu Välimäki
  • Jari Valkama
  • Pekka Helle
Original Article

Abstract

Around the nests of many birds of prey the pressure of nest predators is decreased. This attracts other bird species to breed near nests of those birds of prey in order to benefit from protection conferred. This study examines the possible protective effect of the Northern Goshawk (Accipiter gentilis) on two of its main prey species, the Black Grouse (Tetrao tetrix) and the Capercaillie (Tetrao urogallus). If the Goshawk reduces the number of corvids robbing grouse nests, there should be a larger proportion of grouse females with broods near Goshawk nests during late summer. We compared the proportion of grouse females with the broods observed in wildlife-triangle counts, which were performed along a 12-km-long equilateral triangle in relation to distance from a successful Goshawk nest. Where Goshawks had nested inside a triangle, the proportion of Black Grouse females with a brood was 20 % higher than in situations where a Goshawk had nested 2–3 km away from the center of the triangle. On the other hand, the number of adult Black Grouse rose as the distance from the Goshawk nest increased, but this pattern did not hold with chick abundance. No distance effect was found for Capercaillie. This study thus provided indirect evidence based on quantitative data that Goshawks may create a protective effect for one of its main prey.

Keywords

Goshawk Grouse Nest protection Predation Trophic cascade 

Zusammenfassung

Die Anwesenheit von Habichten erhöht möglicherweise den Bruterfolg von Birkhühnern

Der Prädationsdruck durch Nesträuber ist in der Nähe von Horsten oftmals geringer. Andere Vogelarten brüten daher gern in der Nähe von Horsten, um vom geringeren Prädationsdruck zu profitieren. Wir untersuchten, ob dieses Phänomen auch auf Birkhühner (Tetrao tetrix) und Auerhühner (Tetrao urogallus) zutrifft, zwei der wichtigsten Beutetiere von Habichten. Unsere Annahme war, dass Habichte einen negativen Einfluss auf Rabenvögel, die die Nester von Birkhühnern plündern haben, und wir somit einen erhöhten Anteil brütender Birkhuhnhennen in der Nähe von Habichthorsten im Spätsommer finden sollten. Wir verglichen daher die Anzahl brütender Birkenhuhnhennen in Bezug zur Entfernung von aktiven Habichthorsten innerhalb eines 12 km gleichseitigen Dreiecks. Der Anteil brütender Hennen war 20 % höher in Gebieten mit zentral gelegenen Habichthorsten als in Gebieten, wo Habichte 2–3 km vom Zentrum unseres Messpunktes entfernt brüteten. Jedoch zeigte sich auch, dass die Anzahl adulter Birkhühner mit der Entfernung zu aktiven Habichthorsten zunahm. Dieses Muster traf jedoch nicht zu, wenn wir die Kükenanzahl berücksichtigten. Ebenso fanden wir keinen Effekt auf Auerhühner. Indirekt haben wir hiermit einen quantitativen Nachweis erbracht, dass Habichte möglicherweise einen schützenden Einfluss auf eines ihrer Hauptbeutetiere haben.

Notes

Acknowledgments

We thank Ossi Tornberg and Nora Välimäki for proofreading and two anonymous referees for valuable comments to the manuscript.

References

  1. Andrén H (1990) Despotic distribution unequivocal reproductive success and population regulation in the Hay Garrulus glandarius. Ecology 71:1796–1803CrossRefGoogle Scholar
  2. Andrén H (1992) Corvid density and nest predation in relation to forest fragmentation: a landscape perspective. Ecology 73(3):794–804CrossRefGoogle Scholar
  3. Angelstam P (1984) Sexual and seasonal differences in mortality of the Black Grouse (Tetrao tetrix) in boreal Sweden. Ornis Scand 123–134Google Scholar
  4. Angelstam P (1986) Predation on ground nesting birds’ nests in relation to predator densities and habitat edge. Oikos 47:365–373CrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker B (2012) Lme4: Linear mixed effects models using S4 classes R Package Version 09999990. Available at: http://www.crantrprojectorg
  6. Bjornstad ON (2013) ncf: Spatial nonparametric covariance functions R package Version 115. Available at: http://www.cranrprojectorg/
  7. Blanco G, Tella JL (1997) Protective association and breeding advantages of choughs nesting in lesser kestrel colonies. Anim Behav 54:335–342CrossRefPubMedGoogle Scholar
  8. Bogliani G, Sergio F, Tavecchia G (1999) Woodpigeons nesting in association with hobby falcons: advantages and choice rules. Anim Behav 57:125–131CrossRefPubMedGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information theoretic approach. Springer Verlag, New YorkGoogle Scholar
  10. Byholm P, Burgas D, Virtanen T, Valkama J (2012) Competitive exclusion within the predator community influences the distribution of a threatened prey species. Ecology 93:1802–1808CrossRefPubMedGoogle Scholar
  11. Caro MJ, Rogers CM (1998) Song sparrrows, top carnivores and nest predation: a test of the mesopredator release hypothesis. Oecologia 116:227–233CrossRefPubMedGoogle Scholar
  12. Elmhagen B, Ludwig G, Rushton SP, Helle P, Lindén H (2011) Top predatprs, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. J Anim Ecol 79:785–794Google Scholar
  13. Eng RL, Gullion GW (1962) The predation of Goshawks upon Ruffed Grouse on the Cloquet Forest Research Center Minnesota. Wilson Bull 74:227–242Google Scholar
  14. Erikstad K, Blom R, Myrberget S (1982) Territorial hooded crows as predators on willow ptarmigan nests. J Wildl Manage 46:109–114CrossRefGoogle Scholar
  15. Forsman J, Mönkkönen M, Hukkanen M (2001) Effects of predation on community assembly and spatial dispersion of breeding forest birds. Ecology 82:232–244CrossRefGoogle Scholar
  16. Hadfield J (2012): MCMCglmm: MCMC generalised linear mixed models R Package Version 217. Available at: http://www.cranrprojectorg/
  17. Helle P, Helle T, Lindén H (1994) Capercaillie (Tetrao urogallus) Lekking sites in fragmented Finnish forest landscape. Scand J For Res 9(4):386–396Google Scholar
  18. Jokimäki J, Huhta E (2000) Artificial nest predation and abundance of birds along an urban gradient. The Condor 102:838–847CrossRefGoogle Scholar
  19. Kenward RE (2007) The Goshawk. T and AD Poyser, LondonGoogle Scholar
  20. Korpimäki E, Sulkava S, Huhtala K (1990) Does the year to year variation in the diet of eagle Owl support the alternative prey hypothesis? Oikos 58:47–54CrossRefGoogle Scholar
  21. Korpimäki E, Norrdahl K, Rinta-Jaskari T (1991) Response of stoats and least weasels to fluctuating food abundances: is the low phase of vole cycle due to mustelid predation? Oecologia 88:552–561CrossRefPubMedGoogle Scholar
  22. Lindén H, Wikman M, Helle P (1989) tetraonid populations in Finland in 1988: a comparison between route censuses and wildlife triangles. Suomen Riista 35:36–42 (in Finnish with summary in English) Google Scholar
  23. Ludwig GX, Alatalo RV, Helle P, Nissinen K, Siitari H (2007) Large-scale drainage and breeding in boreal forest grouse. J Appl Ecol 45:325–333CrossRefGoogle Scholar
  24. Luginbuhl JM, Marzluff JM, Bradley JE, Raphael MG, Varland DE (2001) Corvid survey techniques and the relationship between corvid abundance and nest predation. J Field Orn 72:552–572Google Scholar
  25. Madden CF, Arroyo B, Amari A (2015) A review of the impacts of corvids on bird productivity and abundance. Ibis 157:1–16CrossRefGoogle Scholar
  26. Manzer D, Hannon S (2005) Relating grouse nest success and corvid density to habitat: a multiscale approach. J Wildl Manage 69:110–123CrossRefGoogle Scholar
  27. Marjakangas A (1996) Nest losses in a boreal black grouse population. Suomen Riista 42:25–31 (in Finnish with summary in English) Google Scholar
  28. Marjakangas A, Törmälä L (1997) Female age and breeding performance in a cyclic population of black grouse Tetrao tetrix. Wildl Biol 3:195–203Google Scholar
  29. Milonoff M (1994) An overlooked connection between goshawk and tetraonids—corvids! Suomen Riista 40:91–97 (in Finnish with summary in English) Google Scholar
  30. Møller AP (1987) Copulation behaviour in the goshawk Accipiter gentilis. Anim Behav 35:755–763CrossRefGoogle Scholar
  31. Mönkkönen M, Husby M, Tornberg R, Helle P, Thomson RL (2007) Predation as a landscape effect: the trade off by prey species between predation risks and protection benefits. J Anim Ecol 76:619–629 CrossRefPubMedGoogle Scholar
  32. Nilsson SG (1981) The evolution in nest-site selection in hole-nesting birds: The importance of nest predation and competition. Ornis Scand 16:167–175Google Scholar
  33. Norrdahl K, Korpimäki E (1998) Fear in farmlands: how much does predator avoidance affect bird community structure? J Avian Biol 29:79–85CrossRefGoogle Scholar
  34. Norrdahl K, Suhonen J, Hemminki O, Korpimäki E (1995) Predation presence may benefit: Kestrel protect curlew nests against nest predators. Oecologia 101:105–109CrossRefPubMedGoogle Scholar
  35. Paine RT, Wootton JT, Boersma PD (1990) Direct and indirect effects of peregrine falcon predation on seabird abundance. Auk 107:1–9CrossRefGoogle Scholar
  36. Palomares F, Gaona P, Ferreras P, Delibes M (1995) Positive effects on game species of top predators by controlling smaller predator populations: an example with lynx, mongooses and rabbits. Cons Biol 9:295–305CrossRefGoogle Scholar
  37. Parker H (1984) Effect of corvid removal on reproduction willow ptarmigan and black grouse. J Wildl Manage 48:197–205Google Scholar
  38. Penteriani V (2002) Goshawk nesting habitat in Europe and North America; a review. Ornis Fenn 79:149–163Google Scholar
  39. Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11Google Scholar
  40. Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brasharres JS (2009) The rise of mesopredator. Bioscience 59:779–791CrossRefGoogle Scholar
  41. Quinn J, Ueata M (2008) Protective nesting associations in birds. Ibis 150:146–167CrossRefGoogle Scholar
  42. Quinn JL, Prop J, Kokorev Y, Black JM (2003) Predator protection or similar habitat selection in red-breasted goose nesting associations: extremes along a continuum. Anim Behav 65:297–307CrossRefGoogle Scholar
  43. R Core Team (2012): R: A language and environment for statistical computing Version 2151 R Foundation for Statistical Computing Vienna Austria. Available at: http://www.rprojectorg/
  44. Reif V, Tornberg R, Jungell S, Korpimäki E (2001) Diet variation of common buzzards in Finland supports the alternative prey hypothesis. Ecography 24:267–274CrossRefGoogle Scholar
  45. Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:082–998CrossRefGoogle Scholar
  46. Sergio F, Marchesi L, Pedrini P (2003) Spatial refugia and coexistence of a diurnal raptor with its intraguild owl predator. J Anim Ecol 72:232–245CrossRefGoogle Scholar
  47. Sergio F, Newton I, Marchesi L (2005) Top predators and biodiversity. Nature 436:1–4CrossRefGoogle Scholar
  48. Sergio F, Caro T, Brown D, Clucas B, Hunter J, Ketchum J, Mchugh K, Hiraldo F (2008) Top predators as conservation tools: ecological rationale assumptions and efficacy. Annu Rev Ecol Evol Syst 39:1–19CrossRefGoogle Scholar
  49. Swenson JE, Angelstam P (1993) Habitat separation by sympatric forest grouse in Fennoscandia in relation to boreal forest. Can J Zool 71:1303–1310CrossRefGoogle Scholar
  50. Tornberg R (1997) Prey selection of the goshawk Accipiter gentilis during the breeding season: the role of prey profitability and vulnerability. Ornis Fenn 74:15–28Google Scholar
  51. Tornberg R, Colpaert A (2001) Survival ranging habitat choice and diet of the Northern Goshawk Accipiter Gentilis during winter in Northern Finland. Ibis 143:41–50CrossRefGoogle Scholar
  52. Tornberg R, Korpimäki E, Jungell S, Reif V (2005) Delayed numerical response of goshawks to population fluctuation of forest grouse. Oikos 111:408–415CrossRefGoogle Scholar
  53. Tornberg R, Korpimäki E, Byholm P (2006) Ecology of northern goshawk in Fennoscandia. Stud Avian Biol 31:141–157Google Scholar
  54. Tornberg R, Helle P, Korpimäki E (2011) Vulnerability of black grouse hens to goshawk predation: result of food supply or predation facilitation? Oecologia 166:577–584CrossRefPubMedGoogle Scholar
  55. Tornberg R, Reif V, Korpimäki E (2012) What explains forest grouse mortality: predation impacts of raptors vole abundance or weather conditions? Int J Ecol. doi: 10.1155/2012/375260 Google Scholar
  56. Väänänen V-M (2000) Predation risk assocoated with nesting in gull colonies by two Aythya species; observations and an experiment. J Avian Biol 31:31–35CrossRefGoogle Scholar
  57. Väisänen RA, Lammi E, Koskimies P (1998) Distribution numbers and population changes of Finnish breeding birds (in Finnish with English summary). Otava, HelsinkiGoogle Scholar
  58. Wegge P, Storaas T (1990) Nest loss in capercaillie and black grouse in relation to the small rodent cycle in southeast Norway. Oecologia 82:527–530CrossRefPubMedGoogle Scholar
  59. Wiklund CG (1982) Fieldfare (Turdus pilars) breeding success in relation to colony size nest position and association with Merlins (Falco columbarius). Behav Ecol Sociobiol 11:165–172CrossRefGoogle Scholar
  60. Willebrand T (1988) Demography and ecology of a Black Grouse (Tetrao tetrix l) population. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science 148Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Risto Tornberg
    • 1
    Email author
  • Seppo Rytkönen
    • 1
  • Panu Välimäki
    • 1
  • Jari Valkama
    • 2
  • Pekka Helle
    • 3
  1. 1.University of OuluOuluFinland
  2. 2.University of HelsinkiHelsinkiFinland
  3. 3.University of OuluOuluFinland

Personalised recommendations