Journal of Ornithology

, Volume 157, Issue 1, pp 333–342 | Cite as

Hierarchical habitat selection by Eurasian Pygmy Owls Glaucidium passerinum in old-growth forests of the southern French Prealps

  • Luc Barbaro
  • Sébastien Blache
  • Gilles Trochard
  • Cindie Arlaud
  • Nathalie de Lacoste
  • Yves Kayser
Original Article

Abstract

Maintaining or restoring old-growth stand structures in mountain forests, including deadwood and snags provided by natural disturbances, is considered critical for the conservation of secondary cavity-nesting birds. Under current climate warming, old-growth mountain forests might become increasingly important for boreo-alpine species living in the southern part of their ranges. Here, we focused on hierarchical habitat selection by Eurasian Pygmy Owls Glaucidium passerinum in mixed mountain forests at their low latitude range limit in the southern French Prealps. We quantified Pygmy Owl habitat use at complementary hierarchical levels, from the local population to individual home ranges, by combining systematic playback counts and radio-telemetry. Mean home range sizes for breeding adult males covered 0.67 km2, ranging between 0.46 and 0.98 km2. We found evidence for Pygmy Owl habitat selection being a consistently hierarchical process, with (1) fir-dominated forests selected as the main habitat at the population level; (2) old-growth fir-dominated forest stands including edges with grassland gaps and karstic eroded areas selected at the home range level; and (3) amount of surrounding dead or decaying spruces increasing the occurrence probability of owl nesting cavities. Conserving Pygmy Owls at their low latitude range limit therefore requires the maintenance of old-growth mixed forests dominated by firs that provide these critical habitat features within a complex and heterogeneous landscape mosaic.

Keywords

Boreal owl Home range Mountain forests Radio-telemetry Secondary cavity-nester Southern distribution limit 

Zusammenfassung

Hierarchische Habitat-Auswahl beim Sperlingskauz (Glaucidium passerinum) in alten Waldbeständen des französischen Voralpenlandes

Das Erhalten oder die Wiederherstellung alter Bestandsstrukturen in Gebirgswäldern inklusive des durch natürliche Störeinflüsse entstandenen Totholzes und der Baumstümpfe wird als ausschlaggebend für den Erhalt derjenigen Vögel betrachtet, die in sekundären Bruthöhlen nisten. Bei der derzeitigen Klimaerwärmung könnten die alten Gebirgswald-Bestände für diejenigen boreoalpinen Arten immer wichtiger werden, die am südlichen Rand ihrer Verbreitungsgebiete leben. In unserer Studie konzentrierten wir uns auf die hierarchische Habitat-Auswahl von Sperlingskäuzen (Glaucidium passerinum) in Mischwäldern auf mittlerer Höhe der südlichen französischen Voralpen. Mit einer Kombination von Radio-Telemetriedaten und systematisch erfassten Ruf-Zählungen quantifizierten wir die Nutzung der Habitate auf allen Ebenen: von der örtlichen Population bis hin zu den alltäglichen Lebensräumen der Einzeltiere. Die Größe der individuellen Lebensräume brütender, adulter Männchen reichte von 0,46 bis 0,98 km2 und betrug im Schnitt 0,67 km2. Wir fanden Hinweise darauf, dass die Habitat-Auswahl bei Sperlingskäuzen ein durchgängig hierarchischer Vorgang ist: (i) Tannen-dominierte Wälder wurden auf Populations-Ebene als wichtigste Habitate ausgewählt, (ii) auf der Ebene der individuellen Habitate lagen Altbestände von Tannenwäldern, die mit Wiesenflecken und karstig erodierten Bereichen durchsetzt war, an erster Stelle, und (iii) die Menge an toten oder vermodernden Fichten erhöhten die Wahrscheinlichkeit, Nisthöhlen der Sperlingskäuze zu finden. Sperlingskäuze auf den niedrigeren Höhen ihrer Verbreitungsgebieten zu halten, erfordert daher den Erhalt von alten, vorherrschend mit Tannen besetzten Mischwäldern, die innerhalb eines komplexen und heterogenen Landschaftsbildes diese wichtigen Auswahlkriterien für Habitate bieten.

Notes

Acknowledgments

We warmly acknowledge D. Chamberlain, L. Brotons and 2 anonymous reviewers for improving the previous versions of the manuscript. We thank F. Jiguet and O. Dehorter (MNHN Paris) for SB’s personal ringing program on Pygmy Owls, F. Archaux, A. and M. Barbaro, J.Y. Barnagaud, B. Castagneyrol, G. Caullireau, Y. Charbonnier, H. Chirouze, A. Goyot, E. Le Moigne, J. L’Huillier, D. Piou, E. Rousset, L. Trebucq, I. van Halder and B. Veillet for help and advice, and J.L. Traversier (ONF 26), F. Andrieu (DREAL 26), P.E. Biron (RN Hauts Plateaux du Vercors) and Fondation Nature and Découvertes for study funding.

Supplementary material

10336_2015_1285_MOESM1_ESM.doc (164 kb)
Supplementary material 1 (DOC 163 kb)

References

  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  2. Arnett EB, Kroll AJ, Duke SD (2010) Avian foraging and nesting use of created snags in intensively-managed forests of western Oregon, USA. For Ecol Manag 260:1773–1779CrossRefGoogle Scholar
  3. Barton K (2015) Package MuMIn: Model selection and model averaging based on information criteria. R package version 1121. https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf
  4. Beudert B, Bässler C, Thorn S, Noss R, Schröder B, Dieffenbach-Fries H, Foullois N, Müller J (2015) Bark beetles increase biodiversity while maintaining drinking water quality. Conserv Lett 8:1–10CrossRefGoogle Scholar
  5. Bivand R (2015) Package ‘spdep’. R package version 05-83. https://cran.r-project.org/web/packages/spdep/spdep.pdf
  6. Bouget C, Parmain G, Gilg O, Noblecourt T, Nusillard B, Paillet Y, Pernot C, Larrieu L, Gosselin F (2014) Does a set-aside conservation strategy help the restoration of old-growth forest attributes and recolonization by saproxylic beetles? Anim Conserv 17:342–353CrossRefGoogle Scholar
  7. Calenge C, Basille M, Dray S, Fortmann-Roe S (2012) Package adehabitat: analysis of habitat selection by animals. R package version 187. https://cran.r-project.org/web/packages/adehabitat/adehabitat.pdf
  8. Carlson BZ, Renaud J, Biron PE, Choler P (2014) Long-term modeling of the forest–grassland ecotone in the French Alps: implications for land management and conservation. Ecol Appl 24:1213–1225PubMedCrossRefGoogle Scholar
  9. Chamberlain DE, Negro M, Caprio E, Rolando A (2013) Assessing the sensitivity of alpine birds to potential future changes in habitat and climate to inform management strategies. Biol Conserv 167:127–135CrossRefGoogle Scholar
  10. Chinellato F, Faccoli M, Marini L, Battisti A (2014) Distribution of Norway spruce bark and wood-boring beetles along Alpine elevational gradients. Agric For Entomol 16:111–118CrossRefGoogle Scholar
  11. Cockle KL, Martin K, Wesołowski T (2011) Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Front Ecol Environ 9:377–382CrossRefGoogle Scholar
  12. Dormann CF, McPherson JM, Araujo MB, Bivand R, Bolliger J et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  13. Gottschalk TK, Reiners TE (2015) Forest conversion can help to mitigate impacts of climate change on common forest birds. Ann For Sci 72:335–348CrossRefGoogle Scholar
  14. Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711PubMedCrossRefGoogle Scholar
  15. Härmä O, Kareksela S, Siitari H, Suhonen J (2011) Pygmy Owl Glaucidium passerinum and the usage of ultraviolet cues of prey. J Avian Biol 42:89–91CrossRefGoogle Scholar
  16. Heikkinen RK, Luoto M, Virkkala R, Pearson RG, Körber JH (2007) Biotic interactions improve prediction of boreal bird distributions at macro-scales. Glob Ecol Biogeogr 16:754–763CrossRefGoogle Scholar
  17. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Lynx, BarcelonaGoogle Scholar
  18. Kellomäki E (1977) Food of the Pygmy Owl Glaucidium passerinum in the breeding season. Ornis Fenn 54:1–29Google Scholar
  19. Kenward RE (2004) Radio-tagging. In: Sutherland WJ, Newton I, Green RE (eds) Bird ecology and conservation: a handbook of techniques. Oxford University Press, Oxford, pp 141–159CrossRefGoogle Scholar
  20. Lehikoinen A, Ranta E, Pietiäinen H, Byholm P, Saurola P, Valkama J, Huitu O, Henttonen H, Korpimäki E (2011) The impact of climate and cyclic food abundance on the timing of breeding and brood size in four boreal owl species. Oecologia 165:349–355PubMedCrossRefGoogle Scholar
  21. Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals: statistical design and analysis for field studies. Kluwer, LondonGoogle Scholar
  22. Moen J, Rist L, Bishop K, Chapin FS, Ellison D, Kuuluvainen T, Petersson H, Puettmann KJ, Rayner J, Warkentin IG, Bradshaw CJA (2014) Eye on the taiga: removing global policy impediments to safeguard the boreal forest. Conserv Lett 7:408–418CrossRefGoogle Scholar
  23. Muller Y (2003) Nidification de la Chevêchette d’Europe Glaucidium passerinum dans les Vosges du Nord. Ornithos 10:30–36Google Scholar
  24. Müller J, Bußler H, Goßner M, Rettelbach T, Duelli P (2008) The European spruce bark beetle Ips typographus in a national park: from pest to keystone species. Biodivers Conserv 17:2979–3001CrossRefGoogle Scholar
  25. Norris AR, Drever MC, Martin K (2013) Insect outbreaks increase populations and facilitate reproduction in a cavity-dependent songbird, the Mountain Chickadee Poecile gambeli. Ibis 155:165–176CrossRefGoogle Scholar
  26. Pacenovsky S, Shurulinkov P (2008) Latest data on distribution of the Pygmy Owl (Glaucidium passerinum) in Bulgaria and Slovakia including population density comparison. Slovak Rapt J 2:91–106Google Scholar
  27. Pacenovsky S, Sotnar K (2010) Notes on the reproduction, breeding biology and ethology of the Eurasian Pygmy Owl (Glaucidium passerinum) in Slovakia. Slovak Rapt J 4:49–81Google Scholar
  28. Preston KL, Rotenberry JT, Redak RA, Allen MF (2008) Habitat shifts of endangered species under altered climate conditions: importance of biotic interactions. Glob Chang Biol 14:2501–2515Google Scholar
  29. Rolando A (2002) On the ecology of home range in birds. Rev Ecol Terre Vie 57:53–73Google Scholar
  30. Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change 4:806–810CrossRefGoogle Scholar
  31. Sidorovich VE, Solovej IA, Sidorovich AA, Rotenko II (2008) Effect of felling on the distribution of rodents and their predators in a transitional mixed forest. Pol J Ecol 56:309–321Google Scholar
  32. Smith SE, Gregory RD, Anderson BJ, Thomas CD (2013) The past, present and potential future distributions of cold-adapted bird species. Divers Distrib 19:352–362CrossRefGoogle Scholar
  33. Strøm H, Sonerud GA (2001) Home range and habitat selection in the Pygmy Owl Glaucidium passerinum. Ornis Fenn 78:145–158Google Scholar
  34. Suhonen J, Halonen M, Mappes T, Korpimäki E (2007) Interspecific competition limits larders of Pygmy Owls Glaucidium passerinum. J Avian Biol 38:630–634CrossRefGoogle Scholar
  35. Suter W, Graf RF, Hess R (2002) Capercaillie Tetrao urogallus and avian biodiversity: testing the umbrella-species concept. Conserv Biol 16:778–788CrossRefGoogle Scholar
  36. Virkkala R, Liehu H (1990) Habitat selection by the Siberian Tit Parus cinctus in virgin and managed forests in northern Finland. Ornis Fenn 67:1–12Google Scholar
  37. Virkkala R, Heikkinen RK, Fronzek S, Leikola N (2013) Climate change, northern birds of conservation concern and matching the hotspots of habitat suitability with the reserve network. PLoS ONE 8:e63376PubMedPubMedCentralCrossRefGoogle Scholar
  38. Werner SAB, Müller J, Heurich M, Thorn S (2015) Natural regeneration determines wintering bird presence in wind-damaged coniferous forest stands independent of postdisturbance logging. Can J For Res 45:1–6CrossRefGoogle Scholar
  39. Zellweger F, Braunisch V, Baltensweiler A, Bollmann K (2013) Remotely sensed forest structural complexity predicts multi species occurrence at the landscape scale. For Ecol Manag 307:303–312CrossRefGoogle Scholar
  40. Zmihorski M (2012) The effects of anthropogenic and natural disturbances on breeding birds of managed Scots pine forests in northern Poland. Ornis Fenn 89:63–73Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Luc Barbaro
    • 1
    • 2
  • Sébastien Blache
    • 3
  • Gilles Trochard
    • 3
  • Cindie Arlaud
    • 3
  • Nathalie de Lacoste
    • 1
    • 2
  • Yves Kayser
    • 4
  1. 1.INRA, UMR1202 BIOGECOCestasFrance
  2. 2.Univ. Bordeaux, BIOGECO, UMR1202TalenceFrance
  3. 3.Ligue pour la Protection des Oiseaux Drôme, Domaine de GotheronSaint Marcel Les ValenceFrance
  4. 4.Centre de recherche de la Tour du ValatArlesFrance

Personalised recommendations