Journal of Ornithology

, Volume 157, Issue 1, pp 255–264 | Cite as

No detectable effects of lightweight geolocators on a Palaearctic-African long-distance migrant

  • Rien E. van Wijk
  • Guillaume Souchay
  • Susanne Jenni-Eiermann
  • Silke Bauer
  • Michael Schaub
Original Article

Abstract

Tracking devices are used in a broad range of species for a broad range of questions, but their potential effects on study species are debated. Outcomes of earlier studies on effects are equivocal: some studies find negative effects on behaviour and life history traits, while others do not. Contrasting results might be due to low sample sizes, temporal scale (no repetition of the study over multiple years) and a limited range of response variables considered. We investigated effects of geolocators on a range of response variables: body condition, physiological states, reproductive performance and, ultimately, annual apparent survival for a medium-sized Palaearctic-African long-distance migrant, the Eurasian Hoopoe Upupa epops, for the combined study period (2009–2014) and for individual years. We investigated response variables 1 year after deployment of the geolocator and found no differences in body condition, physiological states and several components of reproductive performance between individuals with and without geolocators when data were combined. Also, apparent annual survival did not differ between geolocator and control birds. We did, however, find effects in some years possibly related to environmental stochasticity or chance events due to lower sample sizes. We argue that results of studies on the effects of tracking devices should be interpreted and generalized with great caution and suggest that future studies on the effects of tracking devices are conducted over multiple years. Future studies should also apply capture–recapture models to estimate survival, rather than focus solely on return rates.

Keywords

Body condition Capture–recapture model Corticosterone Migration Survival Hoopoe 

Zusammenfassung

Keine nachweisbaren Effekte von Leichtgewicht-Geodatenloggern bei einem Langstrecken ziehenden paläarktisch-afrikanischen Zugvogel Technische Instrumente zur individuellen Verfolgung von Tieren werden für viele Arten und verschiedene Verwendungszwecke benutzt. Ob diese jedoch einen Effekt auf das Individuum haben, wird vielfach diskutiert. Ältere Studien zeigen unterschiedliche Resultate auf: manche Studien fanden negative Effekte auf das Verhalten und populationsdynamische Faktoren, während andere Studien keine Effekte nachweisen konnten. Diese kontroversen Resultate entstehen womöglich wegen zu niedrigen Stichprobengrößen, der Zeitspanne (keine mehrjährigen Studien) und weil nur einzelne Faktoren untersucht worden sind. In unserer Studie haben wir die möglichen Effekte von Geodatenloggern auf eine Vielzahl von Variablen untersucht: Körperlicher Zustand, physiologischer Zustand, Reproduktionsleistung und jährliche lokale Überlebensrate. Dies wurde an einem Paläarktisch-Afrikanischen Langstreckenzieher mittlerer Größe, dem Wiedehopf (Upupa epops), untersucht, für die gesamte Dauer unserer Studie (2009–2014) sowie für einzelne Jahre. Wir untersuchten Effekte auf diese Variablen ein Jahr nach dem Einsatz der Geodatenlogger und konnten keine Effekte auf die Körperkondition, den physiologischen Zustand und verschiedene Aspekte der Reproduktionsleistung für die kombinierten Daten über alle Jahre nachweisen. Ebenfalls war die jährliche lokale Überlebensrate nicht unterschiedlich zwischen Vögeln mit und ohne Geodatenlogger. Bei Betrachtung der einzelnen Jahre fanden wir aber in manchen Jahren doch gewisse Effekte, welche möglicherweise mit Umweltstochastizität oder zu kleiner Stichprobengröße zusammenhängen. Wir raten zu Vorsicht bei Interpretation und Verallgemeinerung von Ergebnissen von Studien zu Auswirkungen von Ortungsgeräten und empfehlen, dass zukünftige Studien über mehrere Jahre laufen sollten. Zusätzlich empfehlen wir die Verwendung von „Fang-Wiederfang“-Modellen, um damit jährliche Überlebensraten zu untersuchen anstatt nur auf Rückkehrraten zu fokussieren.

Supplementary material

10336_2015_1274_MOESM1_ESM.docx (120 kb)
Supplementary material 1 (DOCX 120 kb)

References

  1. Ackerman JT, Adams J, Takekawa JY et al (2004) Effects of radiotransmitters on the reproductive performance of Cassin’ s auklets. Wildl Soc Bull 32:1229–1241CrossRefGoogle Scholar
  2. Adams J, Scott D, McKechnie S et al (2009) Effects of geolocation archival tags on reproduction and adult body mass of sooty shearwaters (Puffinus griseus). N Z J Zool 36:355–366CrossRefGoogle Scholar
  3. Arlettaz R, Schaub M, Fournier J, Reichlin TS (2010) From publications to public actions: when conservation biologists bridge the gap between research and implementation. Bioscience 60:835–842CrossRefGoogle Scholar
  4. Arlt D, Low M, Pärt T (2013) Effect of geolocators on migration and subsequent breeding performance of a long-distance passerine migrant. PLoS ONE 8:e82316. doi:10.1371/journal.pone.0082316 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bächler E, Hahn S, Schaub M et al (2010) Year-round tracking of small trans-Saharan migrants using light-level geolocators. PLoS ONE 5:e9566. doi:10.1371/journal.pone.0009566 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barron DG, Brawn JD, Weatherhead PJ (2010) Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol Evol 1:180–187. doi:10.1111/j.2041-210X.2010.00013.x CrossRefGoogle Scholar
  7. Bonier F, Moore IT, Robertson RJ (2011) The stress of parenthood? Increased glucocorticoids in birds with experimentally enlarged broods. Biol Lett 7:944–946. doi:10.1098/rsbl.2011.0391 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bowlin MS, Henningsson P, Muijres FT et al (2010) The effects of geolocator drag and weight on the flight ranges of small migrants. Methods Ecol Evol 1:398–402CrossRefGoogle Scholar
  9. Bridge ES, Thorup K, Bowlin MS et al (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698. doi:10.1525/bio.2011.61.9.7 CrossRefGoogle Scholar
  10. Bro E, Clobert J, Reitz F (1999) Effects of radiotransmitters on survival and reproductive success of gray partridge. J Wildl Manag 63:1044–1051CrossRefGoogle Scholar
  11. Burnham KP, Anderson DA (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  12. Choquet R, Lebreton J-D, Gimenez O et al (2009a) U-CARE: utilities for performing goodness of fit tests and manipulating capture–recapture data. Ecography (Cop) 32:1071–1074. doi:10.1111/j.1600-0587.2009.05968.x CrossRefGoogle Scholar
  13. Choquet R, Rouan L, Pradel R (2009b) Program E-Surge: a software application for fitting multievent models. In: Thomson D, Cooch E, Conroy M (eds) Modeling demographic processes in marked populations. Springer, New York, pp 845–865CrossRefGoogle Scholar
  14. Coppens CM, de Boer SF, Koolhaas JM (2010) Coping styles and behavioural flexibility: towards underlying mechanisms. Philos Trans R Soc Lond B 365:4021–4028. doi:10.1098/rstb.2010.0217 CrossRefGoogle Scholar
  15. Costantini D, Møller AP (2013) A meta-analysis of the effects of geolocator application on birds. Curr Zool 59:697–706Google Scholar
  16. Elliott KH, McFarlane-Tranquilla L, Burke CM et al (2012) Year-long deployments of small geolocators increase corticosterone levels in murres. Mar Ecol Prog Ser 466:1–7CrossRefGoogle Scholar
  17. Fairhurst GD, Berzins LL, Bradley DW et al (2015) Assessing costs of carrying geolocators using feather corticosterone in two species of aerial insectivore. R Soc Open Sci 2:150004. doi:10.1098/rsos.150004 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Gómez J, Michelson CI, Bradley DW et al (2014) Effects of geolocators on reproductive performance and annual return rates of a migratory songbird. J Ornithol 155:37–44. doi:10.1007/s10336-013-0984-x CrossRefGoogle Scholar
  19. Guillod N (2013) Landscape of prey in a hoopoe population: consequences of spatial variation of molecricket availability on reproductive success and conservation strategies. Unpublished thesis, University of Bern, BernGoogle Scholar
  20. Hoffmann J, Postma E, Schaub M (2015) Factors influencing double brooding in eurasian hoopoes Upupa epops. Ibis 157:17. doi:10.1111/ibi.12188 CrossRefGoogle Scholar
  21. Hupp JJW, Pearce JJM, Mulcahy DMD, Miller DA (2006) Effects of abdominally implanted radiotransmitters with percutaneous antennas on migration, reproduction, and survival of Canada geese. J Wildl Manag 70:812–822CrossRefGoogle Scholar
  22. Kuznetsova A, Christensen RHB, Bavay C, Brockhoff PB (2015) Automated mixed ANOVA modeling of sensory and consumer data. Food Qual Prefer 40:31–38CrossRefGoogle Scholar
  23. Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118CrossRefGoogle Scholar
  24. Oppel S, Hilton GM, Allcorn R et al (2013) The effects of rainfall on different components of seasonal fecundity in a tropical forest passerine. Ibis 155:464–475. doi:10.1111/ibi.12052 CrossRefGoogle Scholar
  25. Peniche G, Vaughan-Higgins R, Carter I et al (2011) Long-term health effects of harness-mounted radio transmitters in red kites (Milvus milvus) in England. Vet Rec 169:311. doi:10.1136/vr.d4600 PubMedCrossRefGoogle Scholar
  26. Pennycuick CJ, Fast PLF, Ballerstädt N, Rattenborg N (2012) The effect of an external transmitter on the drag coefficient of a bird’s body, and hence on migration range, and energy reserves after migration. J Ornithol 153:633–644. doi:10.1007/s10336-011-0781-3 CrossRefGoogle Scholar
  27. Phillips RA, Xavier JC, Croxall JP (2003) Effects of satellite transmitters on albatrosses and petrels. Auk 120:1082–1090CrossRefGoogle Scholar
  28. Pietz PJ, Krapu GL, Greenwood RJ, Lokemoen JT (1993) Effects of harness transmitters on behavior and reproduction of wild mallards. J Wildl Manag, pp 696–703Google Scholar
  29. Pradel R (2009) The stakes of capture-recapture models with state uncertainty. In: Thomson D, Cooch E, Conroy M (eds) Modeling demographic processes in marked populations. Springer, New York, pp 781–795CrossRefGoogle Scholar
  30. Quillfeldt P, McGill RAR, Furness RW et al (2012) Impact of miniature geolocation loggers on a small petrel, the thin-billed prion Pachyptila belcheri. Mar Biol 159:1809–1816CrossRefGoogle Scholar
  31. Rodríguez A, Negro JJ, Fox JW, Afanasyev V (2009) Effects of geolocator attachments on breeding parameters of lesser kestrels. J Ornithol 80:399–407Google Scholar
  32. Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255. doi:10.1016/j.tree.2004.03.008 PubMedCrossRefGoogle Scholar
  33. Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp Biochem Physiol A 140:73–79. doi:10.1016/j.cbpb.2004.11.004 CrossRefGoogle Scholar
  34. Rotenberry JT, Wiens JA (1991) Weather and reproductive variation in shrubsteppe sparrows: a hierarchical analysis. Ecology 72:1325–1335. doi:10.2307/1941105 CrossRefGoogle Scholar
  35. Sapolsky RM, Romero ML, Munck A (2000) How do glucocorticoids influence the stress response? Endocr Rev 21:55–89PubMedGoogle Scholar
  36. Scandolara C, Rubolini D, Ambrosini R et al (2014) Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits. J Avian Biol 45:1–7CrossRefGoogle Scholar
  37. Schmid B, Tam-Dafond L, Jenni-Eiermann S et al (2013) Modulation of the adrenocortical response to acute stress with respect to brood value, reproductive success and survival in the eurasian hoopoe. Oecologia 173:33–44. doi:10.1007/s00442-013-2598-7 PubMedCrossRefGoogle Scholar
  38. Svensson L (1992) Identification guide to European passerines. Pubished by the author, StockholmGoogle Scholar
  39. Townsend JM, Rimmer CC, McFarland KP (2012) Radio-transmitters do not affect seasonal mass change or annual survival of wintering bicknell’s thrushes. J Ornithol 83:295–301. doi:10.1111/j.1557-9263.2012.00378.x Google Scholar
  40. Tschumi M, Schaub M, Arlettaz R (2014) Territory occupancy and parental quality as proxies for spatial prioritization of conservation areas. PLoS ONE 9:e97679. doi:10.1371/journal.pone.0097679 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Vandenabeele SP, Shepard EL, Grogan A, Wilson RP (2012) When three per cent may not be three per cent; device-equipped seabirds experience variable flight constraints. Mar Biol 159:1–14. doi:10.1007/s00227-011-1784-6 CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Rien E. van Wijk
    • 1
    • 2
  • Guillaume Souchay
    • 1
    • 4
  • Susanne Jenni-Eiermann
    • 1
  • Silke Bauer
    • 1
  • Michael Schaub
    • 1
    • 3
  1. 1.Swiss Ornithological InstituteSempachSwitzerland
  2. 2.Institute of Evolutionary Biology and Environmental Studies, University of ZürichZurichSwitzerland
  3. 3.Institute of Ecology and Evolution, University of BernBernSwitzerland
  4. 4.Office National de la Chasse et de la Faune Sauvage, DER CNERA RFSPLe Perray en Yvelines CedexFrance

Personalised recommendations