Advertisement

Journal of Ornithology

, Volume 156, Issue 4, pp 851–865 | Cite as

Avian genomics: fledging into the wild!

  • Robert H. S. Kraus
  • Michael Wink
Review

Abstract

Next generation sequencing (NGS) technologies provide great resources to study bird evolution and avian functional genomics. They also allow for the identification of suitable high-resolution markers for detailed analyses of the phylogeography of a species or the connectivity of migrating birds between breeding and wintering populations. This review discusses the application of DNA markers for the study of systematics and phylogeny, but also population genetics and phylogeography. Emphasis in this review is on the new methodology of NGS and its use to study avian genomics. The recent publication of the first phylogenomic tree of birds based on genome data of 48 bird taxa from 34 orders is presented in more detail.

Keywords

Next generation sequencing Genetics Ornithology Whole genome Phylogenomics Single nucleotide polymorphisms Microsatellites 

Zusammenfassung

Die Ornithologie ist im Zeitalter der Genomik angekommen Neue Sequenziertechnologien (Next Generation Sequencing; NGS) eröffnen die Möglichkeit, Evolution und funktionelle Genomik bei Vögeln umfassend zu untersuchen. Weiterhin erlaubt die NGS-Technologie, geeignete, hochauflösende Markersysteme für Mikrosatelliten und Single Nucleotide Polymorphisms (SNPs) zu identifizieren, um detaillierte Analysen zur Phylogeographie einer Art oder zur Konnektivität von Zugvögeln zwischen Brut- und Winterpopulationen durchzuführen. Dieses Review widmet sich der Anwendung von DNA Markern für die Erforschung von Systematik und Phylogenie sowie Populationsgenetik und Phylogeographie. Ein Schwerpunkt liegt dabei auf der Methodik des Next Generation Sequencing und dessen Anwendung in der Vogelgenomik. Der 2014 in Science veröffentlichte phylogenomische Stammbaum der Vögel, der auf genomweiten Daten von 48 Vogeltaxa aus 34 Ordnungen basiert, wird dabei detailliert besprochen.

References

  1. Aitken N, Smith S, Schwarz C, Morin PA (2004) Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol Ecol 13:1423–1431. doi: 10.1111/j.1365-294X.2004.02159.x PubMedCrossRefGoogle Scholar
  2. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709. doi: 10.1038/nrg2844 PubMedCrossRefGoogle Scholar
  3. Allentoft ME et al (2009) Identification of microsatellites from an extinct moa species using high-throughput (454) sequence data. Biotechniques 46:195–200. doi: 10.2144/000113086 PubMedCrossRefGoogle Scholar
  4. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208:1095–1108PubMedCrossRefGoogle Scholar
  5. Avery O, MacLeod C, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158PubMedCentralPubMedCrossRefGoogle Scholar
  6. Avise JC, Zink RM (1988) Molecular genetic divergence between avian sibling species: king and clapper rails, long-billed and short-billed dowitchers, boat-tailed and great-tailed grackles, and tufted and black-crested titmice. Auk 105:516–528Google Scholar
  7. Backström N, Fagerberg S, Ellegren H (2008) Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol 17:964–980PubMedCrossRefGoogle Scholar
  8. Baird NA et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3. doi: 10.1371/journal.pone.0003376
  9. Baker A, Haddrath O (2006) Rare genomic events as phylogenetic markers to help resolve the avian tree of life. J Ornithol 147:43–44Google Scholar
  10. Balakrishnan CN, Edwards SV, Clayton DF (2010) The zebra finch genome and avian genomics in the wild. Emu 110:233–241. doi: 10.1071/MU09087 CrossRefGoogle Scholar
  11. Baxter SW, Davey JW, Johnston JS, Shelton AM, Heckel DG, Jiggins CD, Blaxter ML (2011) Linkage mapping and comparative genomics using next-generation RAD sequencing of a non-model organism. PLoS ONE 6:e19315PubMedCentralPubMedCrossRefGoogle Scholar
  12. Bennett S (2004) Solexa Ltd. Pharmacogenomics 5:433–438PubMedCrossRefGoogle Scholar
  13. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552PubMedCrossRefGoogle Scholar
  14. Black WC IV, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46:441–469PubMedCrossRefGoogle Scholar
  15. Boursot P, Belkhir K (2006) Mouse SNPs for evolutionary biology: beware of ascertainment biases. Genome Res 16:1191–1192PubMedCrossRefGoogle Scholar
  16. Bradbury IR et al (2011) Evaluating SNP ascertainment bias and its impact on population assignment in Atlantic cod, Gadus morhua. Mol Ecol Res 11:218–225CrossRefGoogle Scholar
  17. Britten RJ (1986) Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398PubMedCrossRefGoogle Scholar
  18. Brookes AJ (1999) The essence of SNPs. Gene 234:177–186PubMedCrossRefGoogle Scholar
  19. Burke T, Bruford MW (1987) DNA fingerprinting in birds. Nature 326:149–152CrossRefGoogle Scholar
  20. Burleigh JG, Kimball RT, Braun EL (2015) Building the avian tree of life using a large-scale, sparse supermatrix. Mol Phylogenet Evol 84:53–63PubMedCrossRefGoogle Scholar
  21. Burton PR et al (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678. doi: 10.1038/nature05911 CrossRefGoogle Scholar
  22. Castoe TA et al (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS One 7. doi: 10.1371/journal.pone.0030953
  23. Chong AY, Kojima KK, Jurka J, Ray DA, Smit AFA, Isberg SR, Gongora J (2014) Evolution and gene capture in ancient endogenous retroviruses—insights from the crocodilian genomes. Retrovirology 11:71. doi: 10.1186/s12977-014-0071-2 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Cramer ERA, Stenzler L, Talaba AL, Makarewich CA, Vehrencamp SL, Lovette IJ (2008) Isolation and characterization of SNP variation at 90 anonymous loci in the banded wren (Thryothorus pleurostictus). Conserv Genet 9:1657–1660. doi: 10.1007/s10592-008-9511-7 PubMedCentralPubMedCrossRefGoogle Scholar
  25. Cui J et al (2014) Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biol 15:539PubMedCentralPubMedCrossRefGoogle Scholar
  26. Dahm R (2008) Discovering DNA: Friedrich Miescher and the early years of nucleic acid research. Hum Genet 122:565–581PubMedCrossRefGoogle Scholar
  27. Dalloul RA et al (2010) Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 8. doi: 10.1371/journal.pbio.1000475
  28. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510PubMedCrossRefGoogle Scholar
  29. Davey JW, Cezard T, Fuentes-Utrilla P, Eland C, Gharbi K, Blaxter ML (2013) Special features of RAD sequencing data: implications for genotyping. Mol Ecol 22:3151–3164. doi: 10.1111/mec.12084 PubMedCentralPubMedCrossRefGoogle Scholar
  30. del Hoyo J, Collar NJ (2014) Introduction. In: del Hoyo J, Collar NJ (eds) HBW and BirdLife international illustrated checklist of the birds of the world. Non-passerines, vol 1. Lynx Edicions, Barcelona, pp 19–54Google Scholar
  31. Edwards SV (2007) Genomics and ornithology. J Ornithol 148:S27–S33. doi: 10.1007/s10336-007-0238-x CrossRefGoogle Scholar
  32. Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. doi: 10.1126/science.1162986 PubMedCrossRefGoogle Scholar
  33. Ellegren H et al (2012) The genomic landscape of species divergence in Ficedula flycatchers. Nature 491:756–760. doi: 10.1038/nature11584 PubMedGoogle Scholar
  34. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi: 10.1371/journal.pone.0019379 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Eöry L et al (2015) Avianbase: a community resource for bird genomics. Genome Biol 16:21. doi: 10.1186/s13059-015-0588-2 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Ericson PG (2012) Evolution of terrestrial birds in three continents: biogeography and parallel radiations. J Biogeogr 39:813–824CrossRefGoogle Scholar
  37. Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr M (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547PubMedCentralPubMedCrossRefGoogle Scholar
  38. Fedurco M, Romieu A, Williams S, Lawrence I, Turcatti G (2006) BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic Acids Res 34:e22PubMedCentralPubMedCrossRefGoogle Scholar
  39. Frankl-Vilches C et al (2015) Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds. Genome Biol 16:19. doi: 10.1186/s13059-014-0578-9 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Greminger MP et al (2014) Generation of SNP datasets for orangutan population genomics using improved reduced-representation sequencing and direct comparisons of SNP calling algorithms. BMC Genomics 15. doi: 10.1186/1471-2164-15-16
  41. Gardner MG, Fitch AJ, Bertozzi T, Lowe AJ (2011) Rise of the machines—recommendations for ecologists when using next generation sequencing for microsatellite development. Mol Ecol Resour 11:1093–1101. doi: 10.1111/j.1755-0998.2011.03037.x PubMedCrossRefGoogle Scholar
  42. Gärke C, Ytournel F, Bed’Hom B, Gut I, Lathrop M, Weigend S, Simianer H (2012) Comparison of SNPs and microsatellites for assessing the genetic structure of chicken populations. Anim Genet 43:419–428. doi: 10.1111/j.1365-2052.2011.02284.x PubMedCrossRefGoogle Scholar
  43. Gohli J et al (2015) The evolutionary history of Afrocanarian blue tits inferred from genomewide SNPs. Mol Ecol 24:180–191. doi: 10.1111/mec.13008 PubMedCrossRefGoogle Scholar
  44. Goldstein DB, Schlötterer C (1999) Microsatellites: evolution and applications. Oxford University Press, OxfordGoogle Scholar
  45. Green RE et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449. doi: 10.1126/science.1254449 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Greenwold MJ et al (2014) Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol Biol 14:249PubMedCentralPubMedCrossRefGoogle Scholar
  47. Groenen MAM et al (2000) A consensus linkage map of the chicken genome. Genome Res 10:137–147PubMedCentralPubMedGoogle Scholar
  48. Groenen MAM et al (2011) The development and characterization of a 60 K SNP chip for chicken. BMC Genomics 12. doi: 10.1186/1471-2164-12-274
  49. Grohme MA, Frias Soler R, Wink M, Frohme M (2013) Microsatellite marker discovery using single molecule real-time circular consensus sequencing on the Pacific Biosciences RS. Biotechniques 55:253–256. doi: 10.2144/000114104 PubMedGoogle Scholar
  50. Grunstein M, Hogness DS (1975) Colony hybridization—a method for the isolation of cloned DNAs that contain a specific gene. Proc Natl Acad Sci USA 72:3961–3965. doi: 10.1073/pnas.72.10.3961 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Guichoux E et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. doi: 10.1111/j.1755-0998.2011.03014.x PubMedCrossRefGoogle Scholar
  52. Hackett SJ et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768PubMedCrossRefGoogle Scholar
  53. Hagen IJ, Billing AM, Rønning B, Pedersen SA, Pärn H, Slate J, Jensen H (2013) The easy road to genome-wide medium density SNP screening in a non-model species: development and application of a 10 K SNP-chip for the house sparrow (Passer domesticus). Mol Ecol Resour 13:429–439. doi: 10.1111/1755-0998.12088 PubMedCrossRefGoogle Scholar
  54. Harr B, Price T (2012) Speciation: clash of the genomes. Curr Biol 22:R1044–R1046. doi: 10.1016/j.cub.2012.11.005 PubMedCrossRefGoogle Scholar
  55. Hartmann SA, Schaefer HM, Segelbacher G (2014) Development of 12 microsatellite loci for the endangered pale-headed Brushfinch (Atlapetes pallidiceps) and their cross-amplification in two co-occurring brushfinches. J Ornithol 155:835–839CrossRefGoogle Scholar
  56. Harvey MG, Brumfield RT (2015) Genomic variation in a widespread Neotropical bird (Xenops minutus) reveals divergence, population expansion, and gene flow. Mol Phylogenet Evol 83:305–316. doi: 10.1016/j.ympev.2014.10.023 PubMedCrossRefGoogle Scholar
  57. Haussler D et al (2009) Genome 10 K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100:659–674CrossRefGoogle Scholar
  58. Hayden EC (2014) The $1,000 genome. Nature 507:294–295. doi: 10.1038/507294a PubMedCrossRefGoogle Scholar
  59. Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56PubMedCentralPubMedCrossRefGoogle Scholar
  60. Hill WG (1987) DNA fingerprints applied to animal and bird populations. Nature 327:98–99PubMedCrossRefGoogle Scholar
  61. Hillier LW et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–777CrossRefGoogle Scholar
  62. Hoffman JI, Thorne MAS, McEwing R, Forcada J, Ogden R (2013) Cross-amplification and validation of SNPs conserved over 44 million years between seals and dogs. PLoS ONE 8:e68365. doi: 10.1371/journal.pone.0068365 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Hohenlohe PA, Bassham S, Etter PD, Stiffler N, Johnson EA, Cresko WA (2010) Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet 6:e1000862. doi: 10.1371/journal.pgen.1000862 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G (2011) Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Res 11:117–122CrossRefGoogle Scholar
  65. Huang Y et al (2013) The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet 45:776–783. doi: 10.1038/ng.2657 PubMedCentralPubMedCrossRefGoogle Scholar
  66. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921CrossRefGoogle Scholar
  67. Jaratlerdsiri W et al (2014) Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC. PLoS One 9. doi: 10.1371/journal.pone.0114631
  68. Janowski S, Grohme MA, Frohme M, Wink M (2014) Development of new microsatellite (STR) markers for Montagu’s harrier (Circus pygargus) via 454 shot-gun pyrosequencing. Open Ornithol J 7:11–18CrossRefGoogle Scholar
  69. Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331. doi: 10.1126/science.1253451 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Jeffreys AJ, Wilson V, Thein SL (1985a) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73PubMedCrossRefGoogle Scholar
  71. Jeffreys AJ, Wilson V, Thein SL (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature 316:76–79PubMedCrossRefGoogle Scholar
  72. Jonker RM et al (2012) The development of a genome wide SNP set for the barnacle goose Branta leucopsis. PLoS ONE 7:e38412PubMedCentralPubMedCrossRefGoogle Scholar
  73. Jonker RM et al (2013) Genetic consequences of breaking migratory traditions in barnacle geese Branta leucopsis. Mol Ecol 22:5835–5847PubMedCrossRefGoogle Scholar
  74. Kawakami T et al (2014) Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50 k single-nucleotide polymorphism array. Mol Ecol Resour 14:1248–1260. doi: 10.1111/1755-0998.12270 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Kelleher ES, Barbash DA (2010) Expanding islands of speciation. Nature 465:1019–1020PubMedCrossRefGoogle Scholar
  76. Kerr KCR, Cloutier A, Baker AJ (2014) One hundred new universal exonic markers for birds developed from a genomic pipeline. J Ornithol 155:561–569. doi: 10.1007/s10336-014-1041-0 CrossRefGoogle Scholar
  77. Kerstens HHD, Crooijmans RPMA, Veenendaal A, Dibbits BW, Chin-A-Woeng TFC, den Dunnen JT, Groenen MAM (2009) Large scale single nucleotide polymorphism discovery in unsequenced genomes using second generation high throughput sequencing technology: applied to turkey. BMC Genom 10:479CrossRefGoogle Scholar
  78. Kessler LG, Avise JC (1984) Systematic relationships among waterfowl (Anatidae) inferred from restriction endonuclease analysis of mitochondrial DNA. Syst Zool 33:370–380. doi: 10.2307/2413089 CrossRefGoogle Scholar
  79. Kessler LG, Avise JC (1985) A comparative description of mitochondrial DNA differentiation in selected avian and other vertebrate genera. Mol Biol Evol 2:109–125PubMedGoogle Scholar
  80. Konishi M, Emlen ST, Ricklefs RE, Wingfield JC (1989) Contributions of bird studies to biology. Science 246:465–472PubMedCrossRefGoogle Scholar
  81. Kraus RHS et al (2011) Genome wide SNP discovery, analysis and evaluation in mallard (Anas platyrhynchos). BMC Genom 12:150CrossRefGoogle Scholar
  82. Kraus RHS et al (2012) Widespread horizontal genomic exchange does not erode species barriers among sympatric ducks. BMC Evol Biol 12:45PubMedCentralPubMedCrossRefGoogle Scholar
  83. Kraus RHS, Van Hooft P, Megens H-J, Tsvey A, Fokin SY, Ydenberg RC, Prins HHT (2013) Global lack of flyway structure in a cosmopolitan bird revealed by a genome wide survey of single nucleotide polymorphisms. Mol Ecol 22:41–55. doi: 10.1111/mec.12098 PubMedCrossRefGoogle Scholar
  84. Kraus RHS et al (2015) A single-nucleotide polymorphism-based approach for rapid and cost-effective genetic wolf monitoring in Europe based on noninvasively collected samples. Mol Ecol Resour 15:295–305. doi: 10.1111/1755-0998.12307 PubMedCrossRefGoogle Scholar
  85. Kress WJ (2014) Valuing collections. Science 346:1310. doi: 10.1126/science.aaa4115 PubMedCrossRefGoogle Scholar
  86. Kriegs JO, Matzke A, Churakov G, Brosius J, Schmitz J (2006) Retroposons as phylogenetic markers in bird genomes. J Ornithol 147:197–198Google Scholar
  87. Kurvers RHJM et al (2013) Contrasting context dependence of familiarity and kinship in animal social networks. Anim Behav 86:993–1001. doi: 10.1016/j.anbehav.2013.09.001 CrossRefGoogle Scholar
  88. Lerner HRL, Fleischer RC (2010) Prospects for the use of next-generation sequencing methods in ornithology. Auk 127:4–15. doi: 10.1525/auk.2010.127.1.4 CrossRefGoogle Scholar
  89. Levene P (1919) The structure of yeast nucleic acid. J Biol Chem 40:415–424Google Scholar
  90. Li C et al (2014a) Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. GigaScience 3:27PubMedCentralPubMedCrossRefGoogle Scholar
  91. Li S et al (2014b) Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol 15:557PubMedCentralPubMedCrossRefGoogle Scholar
  92. Lovell PV et al (2014) Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biol 15:565PubMedCentralPubMedCrossRefGoogle Scholar
  93. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994PubMedCrossRefGoogle Scholar
  94. Mack AL, Gill FB, Colburn R, Spolsky C (1986) Mitochondrial DNA: a source of genetic-markers for studies of similar passerine bird species. Auk 103:676–681Google Scholar
  95. Malausa T et al (2011) High-throughput microsatellite isolation through 454 GS-FLX titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638–644. doi: 10.1111/j.1755-0998.2011.02992.x PubMedCrossRefGoogle Scholar
  96. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedCentralPubMedGoogle Scholar
  97. Meredith RW, Zhang G, Gilbert MTP, Jarvis ED, Springer MS (2014) Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346:1254390. doi: 10.1126/science.1254390 PubMedCrossRefGoogle Scholar
  98. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46PubMedCrossRefGoogle Scholar
  99. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248. doi: 10.1101/gr.5681207 PubMedCentralPubMedCrossRefGoogle Scholar
  100. Morin PA, McCarthy M (2007) Highly accurate SNP genotyping from historical and low-quality samples. Mol Ecol Notes 7:937–946CrossRefGoogle Scholar
  101. Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216CrossRefGoogle Scholar
  102. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 22:2841–2847. doi: 10.1111/mec.12350 PubMedCentralPubMedCrossRefGoogle Scholar
  103. O’Brien S, Haussler D, Ryder O (2014) The birds of Genome10 K. GigaScience 3:32CrossRefGoogle Scholar
  104. Ogden R, Baird J, Senn H, McEwing R (2012) The use of cross-species genome-wide arrays to discover SNP markers for conservation genetics: a case study from Arabian and scimitar-horned oryx. Conserv Genet Res 4:471–473. doi: 10.1007/s12686-011-9577-2 CrossRefGoogle Scholar
  105. Opazo JC, Hoffman FG, Natarajan C, Witt CC, Berenbrink M, Storz JF (2014) Gene turnover in the avian globin gene families and evolutionary changes in hemoglobin isoform expression. Mol Biol Evol. doi: 10.1093/molbev/msu341 PubMedCentralPubMedGoogle Scholar
  106. Ouborg NJ, Pertoldi C, Loeschcke V, Bijlsma RK, Hedrick PW (2010) Conservation genetics in transition to conservation genomics. Trends Genet 26:177–187. doi: 10.1016/j.tig.2010.01.001 PubMedCrossRefGoogle Scholar
  107. Pfenning AR et al (2014) Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846. doi: 10.1126/science.1256846 PubMedCentralPubMedCrossRefGoogle Scholar
  108. Pereira J et al (2014) Evolutionary genomics and adaptive evolution of the hedgehog gene family (Shh, Ihh and Dhh) in vertebrates. PLoS One 9. doi: 10.1371/journal.pone.0074132
  109. Piertney S (2006) Avian conservation genetics in the era of genomics. J Ornithol 147:17–18 Google Scholar
  110. Quinn TW, Quinn JS, Cooke F, White BN (1987) DNA marker analysis detects multiple maternity and paternity in single broods of the lesser snow goose. Nature 326:392–394CrossRefGoogle Scholar
  111. Quinn TW, Davies JC, Cooke F, White BN (1989) Genetic analysis of offspring of a female–female pair in the lesser snow goose (Chen c. caerulescens). Auk 106:177–184Google Scholar
  112. Rheindt FE, Fujita MK, Wilton PR, Edwards SV (2014) Introgression and phenotypic assimilation in Zimmerius flycatchers (Tyrannidae): population genetic and phylogenetic inferences from genome-wide SNPs. Syst Biol 63:134–152. doi: 10.1093/sysbio/syt070 PubMedCrossRefGoogle Scholar
  113. Romanov MN et al (2014) Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genom 15:1060CrossRefGoogle Scholar
  114. Ronaghi M (2001) Pyrosequencing sheds light on DNA sequencing. Genome Res 11:3–11PubMedCrossRefGoogle Scholar
  115. Rosenblum EB, Novembre J (2007) Ascertainment bias in spatially structured populations: a case study in the Eastern Fence Lizard. J Hered 98:331–336PubMedCrossRefGoogle Scholar
  116. Ruegg K, Anderson EC, Boone J, Pouls J, Smith TB (2014) A role for migration-linked genes and genomic islands in divergence of a songbird. Mol Ecol 23:4757–4769. doi: 10.1111/mec.12842 PubMedCrossRefGoogle Scholar
  117. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230:1350–1354PubMedCrossRefGoogle Scholar
  118. Saiki RK et al (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  119. Sanger F (1981) Determination of nucleotide sequences in DNA. Science 214:1205–1210PubMedCrossRefGoogle Scholar
  120. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCentralPubMedCrossRefGoogle Scholar
  121. Santure AW, Stapley J, Ball AD, Birkhead TR, Burke T, Slate J (2010) On the use of large marker panels to estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs. Mol Ecol 19:1439–1451PubMedCrossRefGoogle Scholar
  122. Scaglione D, Acquadro A, Portis E, Tirone M, Knapp SJ, Lanteri S (2012) RAD tag sequencing as a source of SNP markers in Cynara cardunculus L. BMC Genomics 13. doi: 10.1186/1471-2164-13-3
  123. Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69PubMedCrossRefGoogle Scholar
  124. Schoebel CN et al (2013) Lessons learned from microsatellite development for nonmodel organisms using 454 pyrosequencing. J Evol Biol 26:600–611. doi: 10.1111/jeb.12077 PubMedCrossRefGoogle Scholar
  125. Schopen GCB, Bovenhuis H, Visker MHPW, Van Arendonk JAM (2008) Comparison of information content for microsatellites and SNPs in poultry and cattle. Anim Genet 39:451–453. doi: 10.1111/j.1365-2052.2008.01736.x PubMedCrossRefGoogle Scholar
  126. Seddon JM, Parker HG, Ostrander EA, Ellegren H (2005) SNPs in ecological and conservation studies: a test in the Scandinavian wolf population. Mol Ecol 14:503–511PubMedCrossRefGoogle Scholar
  127. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629PubMedCrossRefGoogle Scholar
  128. Senn H et al (2013) Reference-free SNP discovery for the Eurasian beaver from restriction site-associated DNA paired-end data. Mol Ecol 22:3141–3150. doi: 10.1111/mec.12242 PubMedCrossRefGoogle Scholar
  129. Shafer ABA et al (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87. doi: 10.1016/j.tree.2014.11.009 PubMedCrossRefGoogle Scholar
  130. Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New HavenGoogle Scholar
  131. Smith EFG, Arctander P, Fjeldså J, Amir OG (1991) A new species of shrike (Laniidae: Laniarius) from Somalia, verified by DNA sequence data from the only known individual. Ibis 133:227–235CrossRefGoogle Scholar
  132. Smith MJ, Pascal CE, Grauvogel Z, Habicht C, Seeb JE, Seeb LW (2011) Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales. Mol Ecol Res 11:268–277CrossRefGoogle Scholar
  133. Storch V, Welsch U, Wink M (2013) Evolutionsbiologie (in German), vol 3. Spektrum-Springer, HeidelbergCrossRefGoogle Scholar
  134. Suh A et al (2011) Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds. Nat Commun 2. doi: 10.1038/ncomms1448
  135. Suh A et al (2014a) Multiple lineages of ancient CR1 retroposons shaped the early genome evolution of amniotes. Genome Biol Evol. doi: 10.1093/gbe/evu256 PubMedCentralPubMedGoogle Scholar
  136. Suh A et al (2014b) Early Mesozoic coexistence of amniotes and Hepadnaviridae. PLoS Genet 10:e1004559. doi: 10.1371/journal.pgen.1004559 PubMedCentralPubMedCrossRefGoogle Scholar
  137. Travers KJ, Chin CS, Rank DR, Eid JS, Turner SW (2010) A flexible and efficient template format for circular consensus sequencing and SNP detection. Nucleic Acids Res 38:e159–e159. doi: 10.1093/nar/gkq543 PubMedCentralPubMedCrossRefGoogle Scholar
  138. van Bers NE, van Oers K, Kerstens HH, Dibbits BW, Crooijmans RPMA, Visser ME, Groenen MAM (2010) Genome-wide SNP detection in the great tit Parus major using high throughput sequencing. Mol Ecol 19:89–99PubMedCrossRefGoogle Scholar
  139. van Bers NEM et al (2012) The design and cross-population application of a genome-wide SNP chip for the great tit Parus major. Mol Ecol Res 12:753–770. doi: 10.1111/j.1755-0998.2012.03141.x CrossRefGoogle Scholar
  140. van Tassell CP et al (2008) SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Methods 5:247–252PubMedCrossRefGoogle Scholar
  141. Vellekoop J, Sluijs A, Smit J, Schouten S, Weijers JWH, Sinninghe Damsté JS, Brinkhuis H (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci USA 111:7537–7541. doi: 10.1073/pnas.1319253111 PubMedCentralPubMedCrossRefGoogle Scholar
  142. Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275–305PubMedCentralPubMedCrossRefGoogle Scholar
  143. Wang B, Ekblom R, Bunikis I, Siitari H, Höglund J (2014a) Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution. BMC Genomics 15. doi: 10.1186/1471-2164-15-180
  144. Wang R et al (2014b) Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners. J Comp Neurol. doi: 10.1002/cne.23719 Google Scholar
  145. Wang Z, Zhang J, Yang W, An N, Zhang P, Zhang G, Zhou Q (2014c) Temporal genomic evolution of bird sex chromosomes. BMC Evol Biol 14:250PubMedCentralPubMedCrossRefGoogle Scholar
  146. Warren WC et al (2010) The genome of a songbird. Nature 464:757–762. doi: 10.1038/nature08819 PubMedCentralPubMedCrossRefGoogle Scholar
  147. Watson JD, Crick FHC (1953) Molecular structure of nucleic acids—a structure for deoxyribose nucleic acid. Nature 171:737–738PubMedCrossRefGoogle Scholar
  148. Weber CC, Boussau B, Romiguier J, Jarvis ED, Ellegren H (2014a) Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biol 15:549PubMedCentralPubMedCrossRefGoogle Scholar
  149. Weber CC, Nabholz B, Romiguier J, Ellegren H (2014b) K r/K c but not d N/d S correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol 15:542PubMedCentralPubMedCrossRefGoogle Scholar
  150. Whitney O et al (2014) Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346:1256780. doi: 10.1126/science.1256780 PubMedCentralPubMedCrossRefGoogle Scholar
  151. Wink M (2006) Use of DNA markers to study bird migration. J Ornithol 147:234–244CrossRefGoogle Scholar
  152. Wink M (2011) Evolution und Phylogenie der Vögel—Taxonomische Konsequenzen (in German). Vogelwarte 49:17–24Google Scholar
  153. Wink M (2013) Ornithologie für Einsteiger (in German). Spektrum-Springer, HeidelbergGoogle Scholar
  154. Wink M (2015) Der erste phylogenomische Stammbaum der Vögel (in German). Vogelwarte 53:23–28Google Scholar
  155. Wirthlin M, Lovell PV, Jarvis ED, Mello CV (2014) Comparative genomics reveals molecular features unique to the songbird lineage. BMC Genom 15:1082CrossRefGoogle Scholar
  156. Wong GKS et al (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722. doi: 10.1038/nature03156 PubMedCrossRefGoogle Scholar
  157. Xu X, Zhou Z, Dudley R, MacKem S, Chuong CM, Erickson GM, Varricchio DJ (2014) An integrative approach to understanding bird origins. Science 346:1253293. doi: 10.1126/science.1253293 PubMedCrossRefGoogle Scholar
  158. Zhan X et al (2013) Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat Genet 45:563–566. doi: 10.1038/ng.2588 PubMedCrossRefGoogle Scholar
  159. Zhang G, Li B, Gilbert MTP, Jarvis ED, Wang J, The Avian Genome Consortium (2014a) Comparative genomic data of the Avian Phylogenomics Project. GigaScience 3:26PubMedCentralPubMedCrossRefGoogle Scholar
  160. Zhang G et al (2014b) Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346:1311–1320. doi: 10.1126/science.1251385 PubMedCentralPubMedCrossRefGoogle Scholar
  161. Zhou Q et al (2014) Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346:1246338. doi: 10.1126/science.1246338 PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  1. 1.Department of BiologyUniversity of KonstanzConstanceGermany
  2. 2.Department of Migration and Immuno-EcologyMax Planck Institute for OrnithologyRadolfzellGermany
  3. 3.Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany

Personalised recommendations