Journal of Ornithology

, Volume 157, Issue 1, pp 85–92 | Cite as

Late Miocene buttonquails (Charadriiformes, Turnicidae) from the temperate zone of Eurasia

  • Nikita V. ZelenkovEmail author
  • Natalia V. Volkova
  • Leonid V. Gorobets
Original Article


The evolutionary history of the extant buttonquails (family Turnicidae) is poorly known. The Oligocene stem representatives of the family differ significantly morphologically from the extant members of Turnicidae and presumably had different ecology and lifestyle. Until now, the only pre-Pleistocene record of the crown-group buttonquails was a find in the Pliocene of South Africa—within the modern distribution range of the group. Here we describe remains of the modern-type Turnicidae from the late Miocene of Hungary, Southern Ukraine, and Northern Kazakhstan. These finds show that Turnicidae, which nowadays are restricted to the subtropical and tropical regions, had much wider geographical distribution in the late Miocene. This range expansion might have been related to the wide spread of the open and arid landscapes during the late Miocene. Importantly, all remains described herein are morphologically similar to the living genus Ortyxelos, which has been considered primitive and now inhabits arid landscapes in Africa. The genus Ortyxelos is thus likely yet another (along with ostrich and some mammals) taxon which now inhabits sub-Saharan Africa, but once had a much wider distribution across Eurasia.


Turnicidae Ortyxelosjanossyi Neogene paleogeography Late Miocene Hungary Kazakhstan Ukraine 


Laufhühnchen (Charadriiformes, Turnicidae) aus dem späten Miozän der gemäßigten Breiten Eurasiens. Über die Evolutionsgeschichte der Laufhühnchen (Familie Turnicidae) ist nur wenig bekannt Die oligozänen Stammformen der Familie unterscheiden sich morphologisch deutlich von den rezenten Vertretern der Turnicidae und besaßen vermutlich eine andere Ökologie und Lebensweise. Bis vor kurzem war ein Fund aus dem Pliozän Südafrikas-innerhalb des heutigen Verbreitungsgebietes der Gruppe-der einzige prä-pleistozäne Nachweis der Laufhühnchen-Kronengruppe. Hier beschreiben wir Fossilien vom Typ der modernen Turniciden aus dem späten Miozän aus Ungarn, der Südukraine und aus Nordkasachstan. Diese Funde zeigen, dass die Turniciden, welche heute auf tropische und subtropische Regionen beschränkt sind, im Spätmiozän deutlich weiter verbreitet waren. Diese Arealerweiterung könnte mit der großen Ausdehnung offener und arider Landschaftstypen während des Spätmiozäns zusammenhängen. Es ist von Bedeutung, dass alle hier beschriebenen Fossilien morphologisch der Gattung Ortyxelos ähneln, welche als ursprünglich gilt und heute aride Landstriche in Afrika bewohnt. Somit ist die Gattung Ortyxelos (neben Afrikanischem Strauß und einigen Säugetieren) ein weiteres Taxon, welches heute das subsaharische Afrika besiedelt, einst aber viel weiter über Eurasien verbreitet war.



The authors are thankful to László Makádi, Bodor Emese, and Palotás Klára for their assistance and for providing access to the collections of fossil birds in the Geological and Geophysical Institute of Hungary, and also to Christine Lefèvre for allowing access to the comparative osteological collection of birds in the Muséum national d’Histoire naturelle (Paris). The authors are further deeply indebted to Maxim V. Sinitsa (National Museum of Natural History at the National Academy of Sciences of Ukraine; Kyiv) for collecting bird fossils in Egorovka localities and bringing them to our attention, and also for valuable comments on the manuscript. We are also grateful to Estelle Bourdon and an anonymous reviewer whose comments improved the manuscript. This study was supported by a grant from the Russian Foundation for Basic Research (project 14-04-01223).


  1. Baird RF (1993) Pleistocene avian fossils from Pyramids Cave (M-89), eastern Victoria, Australia. Alcheringa 17:383–404CrossRefGoogle Scholar
  2. Balouet JC, Olson SL (1989) Fossil birds from late Quaternary deposits in New Caledonia. Smiths Contrib Zool 469:1–38CrossRefGoogle Scholar
  3. Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC (1993) Handbook of avian anatomy: nomina anatomica avium. Nuttall Ornithological Club, CambridgeGoogle Scholar
  4. Bernor RL, Rook L, Haile-Selassie Y (2009) Paleobiogeography. In: Haile-Selassie Y, Wolde Gabriel G (eds) Ardipithecus kadabba: Late Miocene evidence from the Middle Awash, Ethiopia. University of California Press, Berkeley, pp 549–563Google Scholar
  5. Bibi F (2011) Mio-Pliocene faunal exchanges and African biogeography: the record of fossil bovids. PLoS One 6:e16688PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bock WJ, McEvey A (1969) Osteology of Pedionomus torquatus (Aves: pedionomidae) and its allies. Proc Roy Soc Victoria 82:187–232Google Scholar
  7. Boev ZN, Kovachev D (2007) Euroceros bulgaricus gen. nov., sp. nov. from Hadzhidimovo (SW Bulgaria) (Late Miocene)–the first European record of Hornbills (Aves: Coraciiformes). Geobios 40:39–49CrossRefGoogle Scholar
  8. Boev ZN, Spassov N (2009) First record of ostriches (Aves, Struthioniformes, Struthionidae) from the late Miocene of Bulgaria with taxonomic and zoogeographic discussion. Geodiversitas 31:493–507CrossRefGoogle Scholar
  9. Burleigh JG, Kimball RT, Braun EL (2015) Building the avian tree of life using a large-scale, sparse supermatrix. Mol Phyl Evol 84:53–63CrossRefGoogle Scholar
  10. Cracraft J (2013) Avian higher-level relationships and classification: nonpasseriformes. In: Dickinson EC, Remsen JV Jr (eds) The Howard and Moore complete checklist of the birds of the world, vol 1, 4th edn. Aves, Eastbourne, pp xxi–xliGoogle Scholar
  11. Debus SJS (1996) Family Turnicidae (Buttonquails). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 3. Hoatzin to Auks, Lynx, Barcelona, pp 44–59Google Scholar
  12. Dickinson EC, Remsen JV Jr (eds) (2013) The Howard and Moore complete checklist of the birds of the world, vol 1: non-passerines. Aves, EastbourneGoogle Scholar
  13. Eronen JT, Ataabadi MM, Micheels A, Karme A, Bernor RL, Fortelius M (2009) Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Proc Natl Acad Sci 106:11867–11871PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fortelius M, Werdelin L, Andrews P, Bernor RL, Gentry A, Humphrey L, Mittmann H-W, Viratana S (1996) Provinciality, diversity, turnover, and paleoecology in land mammal faunas of the later Miocene of Western Eurasia. In: Bernor RL, Fahlbusch V, Mittmann HW (eds) The evolution of western Eurasian Neogene nammal faunas. Columbia University Press, New York, pp 414–448Google Scholar
  15. Fortelius M, Eronen J, Liu L, Pushkina D, Tesakov A, Vislobokova IA, Zhang Z (2006) Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaeogeogr Palaeoclim Palaeoecol 238:219–227CrossRefGoogle Scholar
  16. Hou L (1993) Avian fossils of Pleistocene from Zhoukoudian. Mem Inst Vertebr Paleontol Paleoanthropol Acad Sin 19:165–297Google Scholar
  17. Jánossy D (1991) Late Miocene bird remains from Polgardi (W-Hungary). Aquila 98:13–35Google Scholar
  18. Kessler E (2009) New results with regard to the Neogene and Quaternary Avifauna of the Carpathian Basin. Part II. Földt Közl 139:251–271Google Scholar
  19. Kurochkin EN (1985) Birds of Central Asia in the Pliocene. Trans Joint Sov-Mongol Palaeontol Exped 26:1–120 (in Russian)Google Scholar
  20. Livezey BC (2010) Phylogenetics of modern shorebirds (Charadriiformes) based on phenotypic evidence: analysis and discussion. Zool J Linn Soc 160:567–618CrossRefGoogle Scholar
  21. Mayr G (2000) Charadriiform birds from the early Oligocene of Céreste (France) and the middle Eocene of Messel (Hessen, Germany). Geobios 33:625–636CrossRefGoogle Scholar
  22. Mayr G (2011) The phylogeny of charadriiform birds (shorebirds and allies)–reassessing the conflict between morphology and molecules. Zool J Linn Soc 161:916–934CrossRefGoogle Scholar
  23. Mayr G, Knopf CW (2007) A stem lineage representative of buttonquails from the Lower Oligocene of Germany – fossil evidence for a charadriiform origin of the Turnicidae. Ibis 149:774–782CrossRefGoogle Scholar
  24. Meijer HJM, Sutikna T, Saptomo EW, Awe RD, Jatmiko Wasisto S, James HF, Morwood MJ, Tocheri MW (2013) Late Pleistocene-Holocene non-passerine avifauna of Liang Bua (Flores, Indonesia). J Vertebr Paleontol 33:877–894CrossRefGoogle Scholar
  25. Mikhailov KE, Kurochkin EN (1988) The eggshells of Struthioniformes from the Palearctic and its position in the system of views on Ratitae evolution. Trans Joint Sov-Mongol Paleontol Exped 34:43–64 (in Russian)Google Scholar
  26. Nesin VA, Nadachowski A (2001) Late Miocene and Pliocene small mammal faunas (Insectivora, Lagomorpha, Rodentia) of Southeastern Europe. Acta Zool Cracov 44:107–135Google Scholar
  27. Olson SL (1994) Early Pliocene grebes, button-quail, and kingfishers from South-Western Cape province, South Africa (Aves: Podicipedidae, Turnicidae, Halcyonidae). Ann S Afr Mus 104:49–61Google Scholar
  28. Paton T, Baker AJ (2006) Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the charadriiform birds congruent with the nuclear RAG-1 tree. Mol Phyl Evol 39:657–667CrossRefGoogle Scholar
  29. Paton TA, Baker AJ, Groth JG, Barrowclough GF (2003) RAG-1 sequences resolve phylogenetic relationships within Charadriiform birds. Mol Phyl Evol 29:268–278CrossRefGoogle Scholar
  30. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Heaven, LondonGoogle Scholar
  31. Sinitsa MV (2008) Maeotian small mammals from the Egorovka locality. In: Gozhik PF (ed) Biostratigraphic fundamentals of creating the stratigraphic schemes of the Phanerozoic of Ukraine: Proceedings of the Institute of Geological Sciences of the NAS of Ukraine. Inst Geol Sci NAS Ukraine, Kyiv, pp 285–289Google Scholar
  32. Sinitsa MV (2010) Cricetids (Mammalia, Rodentia) from the Upper Miocene of Egorovka locality. Vestn Zool 44:209–225Google Scholar
  33. Steadman DW (2006) Extinction and biogeography of tropical pacific birds. University of Chicago Press, ChicagoGoogle Scholar
  34. Topachevski VA, Nesin VA, Topachevski IV (2000) Oryctocenozy mlekopitayuschikh (Mammalia) v meotise cherevychanskogo razreza (Mammal oryctocenoses in the Meotian of the Cherevychnoi section). Reports Natl Acad Sci Ukraine 10:192–195 (in Russian)Google Scholar
  35. Tyrberg T (1998) Pleistocene birds of the Palearctic: a catalogue. Nuttall Ornithological Club, CambridgeGoogle Scholar
  36. Vangengeim EA, Tesakov AS (2008) Maeotian mammalian localities of Eastern Paratethys: magnetochronology and position in European continental scales. Strat Geol Corr 16:437–450CrossRefGoogle Scholar
  37. Venczel M (1998) Late Miocene snakes (Reptilia: Serpentes) from Polgárdi (Hungary): a second contribution. Acta Zool Cracov 41:1–22Google Scholar
  38. Venczel M (2006) Lizards from the Late Miocene of Polgárdi (W-Hungary). Nymphaea 33:25–38Google Scholar
  39. Wang X, Flynn LJ, Fortelius M (eds) (2013) Fossil mammals of Asia: Neogene biostratigraphy and chronology. Columbia University Press, New YorkGoogle Scholar
  40. Zykin VS (2012) Stratigraphiya i evolyuciya prirodnoi sredy I klimata v pozdnem kainozoe yuga Zapadnoi Sibiri (Stratigraphy and evolution of natural environment and climate in the late Cenozoic of the southern Westen Siberia). Academicheskoe izdatel’stvo Geo, Novosibirsk (in Russian)Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Nikita V. Zelenkov
    • 1
    Email author
  • Natalia V. Volkova
    • 1
  • Leonid V. Gorobets
    • 2
    • 3
  1. 1.Borissiak Paleontological Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.Taras Shevchenko National University of KyivKyivUkraine
  3. 3.National Museum of Natural History at the National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations