Advertisement

Journal of Ornithology

, Volume 156, Supplement 1, pp 389–398 | Cite as

Developmental stress: evidence for positive phenotypic and fitness effects in birds

  • Ondi L. CrinoEmail author
  • Creagh W. Breuner
Review

Abstract

The developmental environment has strong and pervasive effects on animal phenotype. Exposure to stress during development (in the form of elevated glucocorticoid hormones or food restriction) is one environmental cue that can have strong formative effects on morphology, physiology, and behavior. Although many of the effects of developmental stress appear negative, there is increasing evidence for an adaptive role of developmental stress in shaping animal phenotype. Here, we take a three-pronged approach to review studies that have uncovered positive effects of developmental stress on phenotype in birds. We focus on studies that: (1) examine phenotypic effects likely to increase fitness in offspring, (2) directly identify increased fitness in offspring, or (3) provide evidence of fitness benefits to the mother, at a cost to the offspring. Throughout, we focus on studies that evaluate the environment when assessing the ‘costs/benefits’ of phenotype alterations and examine the effects of developmental stress across life-history stages. Finally, we consider the two common methods used to simulate developmental stress: food restriction and direct hormone manipulation. Although these methods are often considered to elicit equivalent responses, there has been very little discussion of this in the literature. To this end, we review the main methods used to implement developmental stress in experimental studies and discuss how they may simulate different environmental conditions. In light of our conclusions, we propose possible avenues for future research, stressing the need for a greater focus on direct fitness metrics, longitudinal studies, and experiments in free-living animals.

Keywords

Birds Corticosterone Developmental stress Fitness Nestlings Performance Phenotypic plasticity 

Notes

Acknowledgments

We would like to thank Kendra Sewall, Haruka Wada and Brit Heidinger for organizing the symposium on developmental stress. The Wildlife Biology Program at the University of Montana provided travel support to CWB to attend the IOC.

References

  1. Badyaev AV (2014) Epigenetic resolution of the “curse of complexity” in adaptive evolution of complex traits. J Physiol Lond 592:2251–2260. doi: 10.1113/jphysiol.2014.272625 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Banerjee SB, Arterbery AS, Fergus DJ, Adkins-Regan E (2012) Deprivation of maternal care has long-lasting consequences for the hypothalamic-pituitary-adrenal axis of zebra finches. P Roy Soc B Biol Sci 279:759–766. doi: 10.1098/rspb.2011.1265 CrossRefGoogle Scholar
  3. Blas J, Bortolotti GR, Tella JL, Baos R, Marchant TA (2007) Stress response during development predicts fitness in a wild, long lived vertebrate. P Natl Acad Sci 104:8880–8884. doi: 10.1073/pnas.0700232104 CrossRefGoogle Scholar
  4. Bonaparte KM, Riffle-Yokoi C, Burley NT (2011) Getting a head start: diet, sub-adult growth, and associative learning in a seed-eating passerine. Plos One 6:e23775PubMedPubMedCentralCrossRefGoogle Scholar
  5. Breuner C (2008) Maternal stress, glucocorticoids, and the maternal/fetal match hypothesis. Horm Behav 54:485–487. doi: 10.1016/j.yhbeh.2008.05.013 PubMedCrossRefGoogle Scholar
  6. Buchanan KL, Spencer KA, Goldsmith AR, Catchpole CK (2003) Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). P Roy Soc B Biol Sci 270:1149–1156. doi: 10.1098/rspb.2003.2330 CrossRefGoogle Scholar
  7. Buchanan KL, Leitner S, Spencer KA, Goldsmith AR, Catchpole CK (2004) Developmental stress selectively affects the song control nucleus HVC in the zebra finch. P Roy Soc B Biol Sci 271:2381–2386CrossRefGoogle Scholar
  8. Cabezas S, Blas J, Marchant TA, Moreno S (2007) Physiological stress levels predict survival probabilities in wild rabbits. Horm Behav 51:313–320PubMedCrossRefGoogle Scholar
  9. Calandreau L et al (2011) Effect of one week of stress on emotional reactivity and learning and memory performances in Japanese quail. Behav Brain Res 217:104–110PubMedCrossRefGoogle Scholar
  10. Carmona-Isunza MC, Nunez-de la Mora A, Drummond H (2013) Chronic stress in infancy fails to affect body size and immune response of adult female blue-footed boobies or their offspring. J Avian Biol 44:390–398. doi: 10.1111/j.1600-048X.2013.00057.x CrossRefGoogle Scholar
  11. Chin EH, Love OP, Verspoor JJ, Williams TD, Rowley K, Burness G (2009) Juveniles exposed to embryonic corticosterone have enhanced flight performance. P Roy Soc B Biol Sci 276:499–505. doi: 10.1098/rspb.2008.1294 CrossRefGoogle Scholar
  12. Chin EH, Quinn JS, Burness G (2013) Acute stress during ontogeny suppresses innate, but not acquired immunity in a semi-precocial bird (Larus delawarensis). Gen Comp Endocr 193:185–192. doi: 10.1016/j.ygcen.2013.08.007 PubMedCrossRefGoogle Scholar
  13. Coslovsky M, Richner H (2011) Predation risk affects offspring growth via maternal effects. Funct Ecol 25:878–888. doi: 10.1111/j.1365-2435.2011.01834.x CrossRefGoogle Scholar
  14. Crino OL, Van Oorschot BK, Johnson EE, Malisch JL, Breuner CW (2011) Proximity to a high traffic road: glucocorticoid and life history consequences for nestling white-crowned sparrows. Gen Comp Endocr 173:323–332. doi: 10.1016/j.ygcen.2011.06.001 PubMedCrossRefGoogle Scholar
  15. Crino OL, Driscoll SC, Breuner CW (2014a) Corticosterone exposure during development has sustained but not lifelong effects on body size and total and free corticosterone responses in the zebra finch. Gen Comp Endocr 196:123–129. doi: 10.1016/j.ygcen.2013.10.006 PubMedCrossRefGoogle Scholar
  16. Crino OL, Driscoll SC, Ton R, Breuner CW (2014b) Corticosterone exposure during development improves performance on a novel foraging task in zebra finches. Anim Behav 91:27–32CrossRefGoogle Scholar
  17. Crino OL, Prather CT, Driscoll SC, Good JM, Breuner CW (2014c) Developmental stress increases reproductive success in male zebra finches, P Roy Soc B Biol Sci 281. doi: 10.1098/Rspb.2014.1266(doi:Artn 20141266)
  18. Fairhurst GD, Treen GD, Clark RG, Bortolotti GR (2012) Nestling corticosterone response to microclimate in an altricial bird. Can J Zool 90:1422–1430. doi: 10.1139/cjz-2012-0096 CrossRefGoogle Scholar
  19. Forstmeier W, Schielzeth H, Schneider M, Kempenaers B (2007) Development of polymorphic microsatellite markers for the zebra finch (Taeniopygia guttata). Mol Ecol Notes 7:1026–1028. doi: 10.1111/j.1471-8286.2007.01762.x CrossRefGoogle Scholar
  20. Francis D, Diorio J, Liu D, Meaney MJ (1999) Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 286:1155–1158. doi: 10.1126/science.286.5442.1155 PubMedCrossRefGoogle Scholar
  21. Franzke A, Reinhold K (2013) Transgenerational effects of diet environment on life-history and acoustic signals of a grasshopper. Behav Ecol 24:734–739. doi: 10.1093/beheco/ars205 CrossRefGoogle Scholar
  22. Gil D, Naguib M, Riebel K, Rutstein A, Gahr M (2006) Early condition, song learning, and the volume of song brain nuclei in the zebra finch (Taeniopygia guttata). J Neurobiol 66:1602–1612. doi: 10.1002/Neu.20312 PubMedCrossRefGoogle Scholar
  23. Gluckman PD, Hanson MA (2004) Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr Res 56:311–317. doi: 10.1203/01.Pdr.0000135998.08025.Fb PubMedCrossRefGoogle Scholar
  24. Goerlich VC, Natt D, Elfwing M, Macdonald B, Jensen P (2012) Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the preococial chicken. Horm Behav 61:711–718PubMedCrossRefGoogle Scholar
  25. Grindstaff JL, Hunsaker VR, Cox SN (2012) Maternal and developmental immune challenges alter behavior and learning ability of offspring. Horm Behav 62:337–344. doi: 10.1016/j.yhbeh.2012.04.005 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Haussmann MF, Longenecker AS, Marchetto NM, Juliano SA, Bowden RM (2012) Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length. P Roy Soc B Biol Sci 279:1447–1456. doi: 10.1098/rspb.2011.1913 CrossRefGoogle Scholar
  27. Hayward LS, Wingfield JC (2004) Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. Gen Comp Endocr 135:365–371. doi: 10.1016/j.ygcen.2003.11.002 PubMedCrossRefGoogle Scholar
  28. Henriksen R, Rettenbacher S, Groothuis TGG (2011) Prenatal stress in birds: pathways, effects, function and perspectives. Neurosci Biobehav R 35:1484–1501. doi: 10.1016/j.neubiorev.2011.04.010 CrossRefGoogle Scholar
  29. Honarmand M, Goymann W, Naguib M (2010) Stressful dieting: nutritional conditions but not compensatory growth elevate corticosterone levels in zebra finch nestlings and fledglings. Plos One. doi: 10.1371/journal.pone.0012930 ARTN e12930 PubMedPubMedCentralGoogle Scholar
  30. Kitaysky AS, Kitaiskaia EV, Wingfield JC, Piatt JF (2001) Dietary restriction causes chronic elevation of corticosterone and enhances stress response in red-legged kittiwake chicks. J Comp Physiol B 171:701–709. doi: 10.1007/s003600100230 PubMedCrossRefGoogle Scholar
  31. Kitaysky AS, Kitaiskaia EV, Wingfield JC (2003) Benefits and costs of increased levels of corticosterone in seabird chicks. Horm Behav 43:140–149PubMedCrossRefGoogle Scholar
  32. Kriengwatana B, Wada H, Schmidt KL, Taves MD, Soma KK, MacDougall-Shackleton SA (2014) Effects of nutritional stress during different developmental periods on song and the hypothalamic-pituitary-adrenal axis in zebra finches. Horm Behav 65:285–293. doi: 10.1016/j.yhbeh.2013.12.013 PubMedCrossRefGoogle Scholar
  33. Liu D et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662. doi: 10.1126/science.277.5332.1659 PubMedCrossRefGoogle Scholar
  34. Loiseau C, Sorci G, Dano S, Chastel O (2008) Effects of experimental increase of corticosterone levels on begging behavior, immunity and parental provisioning rate in house sparrows. Gen Comp Endocr 155:101–108. doi: 10.1016/j.ygcen.2007.03.004 PubMedCrossRefGoogle Scholar
  35. Love OP, Williams TD (2008a) The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am Nat 172:E135–E149. doi: 10.1086/590959 PubMedCrossRefGoogle Scholar
  36. Love OP, Williams TD (2008b) Plasticity in the adrenocortical response of a free-living vertebrate: the role of pre- and post-natal developmental stress. Horm Behav 54:496–505PubMedCrossRefGoogle Scholar
  37. Lucassen PJ, Naninck EFG, van Goudoever JB, Fitzsimons C, Joels M, Korosi A (2013) Perinatal programming of adult hippocampal structure and function; emerging roles of stress, nutrition and epigenetics. Trends Neurosci 36:621–631. doi: 10.1016/j.tins.2013.08.002 PubMedCrossRefGoogle Scholar
  38. Lynn SE, Kern MD (2014) Environmentally relevant bouts of cooling stimulate corticosterone secretion in free-living eastern bluebird (Sialia sialis) nestlings: potential links between maternal behavior and corticosterone exposure in offspring. Gen Comp Endocr 196:1–7. doi: 10.1016/j.ygcen.2013.11.011 PubMedCrossRefGoogle Scholar
  39. MacDougall-Shackleton SA, Spencer KA (2012) Developmental stress and birdsong: current evidence and future directions. J Ornithol 153:S105–S117. doi: 10.1007/s10336-011-0807-x CrossRefGoogle Scholar
  40. Matthews SG (2002) Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrin Met 13:373–380. doi: 10.1016/S1043-2760(02)00690-2 CrossRefGoogle Scholar
  41. McMillen IC, Robinson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633. doi: 10.1152/physrev.00053.2003 PubMedCrossRefGoogle Scholar
  42. Metcalfe NB, Ure SE (1995) Diurnal-variation in-flight performance and hence potential predation risk in small birds. P Roy Soc B Biol Sci 261:395–400. doi: 10.1098/rspb.1995.0165 CrossRefGoogle Scholar
  43. Miller GM, Watson SA, Donelson JM, McCormick MI, Munday PL (2012) Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nat Clim Change 2:858–861. doi: 10.1038/Nclimate1599 CrossRefGoogle Scholar
  44. Monaghan P (2008) Early growth conditions, phenotypic development and environmental change. Philos T R Soc B 363:1635–1645. doi: 10.1098/rstb.2007.0011 CrossRefGoogle Scholar
  45. Monaghan P, Heidinger BJ, D’Alba L, Evans NP, Spencer KA (2012) For better or worse: reduced adult lifespan following early-life stress is transmitted to breeding partners. P Roy Soc B Biol Sci 279:709–714. doi: 10.1098/rspb.2011.1291 CrossRefGoogle Scholar
  46. Mousseau TA, Fox CW (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407. doi: 10.1016/S0169-5347(98)01472-4 PubMedCrossRefGoogle Scholar
  47. Muller C, Jenni-Eiermann S, Jenni L (2009) Effects of a short period of elevated circulating corticosterone on postnatal growth in free-living Eurasian kestrels Falco tinnunculus. J Exp Biol 212:1405–1412. doi: 10.1242/Jeb.024455 PubMedCrossRefGoogle Scholar
  48. Nesan D, Vijayan MM (2013) Role of glucocorticoid in developmental programming: evidence from zebrafish. Gen Comp Endocr 181:35–44. doi: 10.1016/j.ygcen.2012.10.006 PubMedCrossRefGoogle Scholar
  49. Noble DWA, McFarlane SE, Keogh JS, Whiting MJ (2014) Maternal and additive genetic effects contribute to variation in offspring traits in a lizard. Behav Ecol. doi: 10.1093/beheco/aru032 Google Scholar
  50. Nowicki S, Peters S, Podos J (1998) Song learning, early nutrition and sexual selection in songbirds. Am Zool 38:179–190CrossRefGoogle Scholar
  51. Nowicki S, Searcy WA, Peters S (2002) Brain development, song learning and mate choice in birds: a review and experimental test of the “nutritional stress hypothesis”. J Comp Physiol A 188:1003–1014. doi: 10.1007/s00359-002-0361-3 CrossRefGoogle Scholar
  52. Patterson SH, Hahn TP, Cornelius JM, Breuner CW (2014) Natural selection and glucocorticoid physiology. J Evol Biol 27:259–274PubMedCrossRefGoogle Scholar
  53. Pravosudov VV, Kitaysky AS (2006) Effects of nutritional restrictions during post-hatching development on adrenocortical function in western scrub-jays (Aphelocoma californica). Gen Comp Endocr 145:25–31. doi: 10.1016/j.ygcen.2005.06.011 PubMedCrossRefGoogle Scholar
  54. Pravosudov VV, Lavenex P, Omanska A (2005) Nutritional deficits during early development affect hippocampal structure and spatial memory later in life. Behav Neurosci 119:1368–1374PubMedCrossRefGoogle Scholar
  55. Prudic KL, Jeon C, Cao H, Monteiro A (2011) Developmental plasticity in sexual roles of butterfly species drives mutational selection. Science 331:73–75PubMedCrossRefGoogle Scholar
  56. Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255PubMedCrossRefGoogle Scholar
  57. Roulin A et al (2008) Corticosterone mediates the condition-dependent component of melanin-based coloration. Anim Behav 75:1351–1358. doi: 10.1016/j.anbehav.2007.09.007 CrossRefGoogle Scholar
  58. Saino N, Romano M, Ferrari RP, Martinelli R, Moller AP (2005) Stressed mothers lay eggs with high corticosterone levels which produce low-quality offspring. J Exp Zool Part A 303A:998–1006CrossRefGoogle Scholar
  59. Schmidt KL, MacDougall-Shackleton EA, Soma KK, MacDougall-Shackleton SA (2014) Developmental programming of the HPA and HPG axes by early-life stress in male and female song sparrows. Gen Comp Endocr 196:72–80PubMedCrossRefGoogle Scholar
  60. Schoech SJ, Rensel MA, Heiss RS (2011) Short- and long-term effects of developmental corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: a review. Curr Zool 57:514–530Google Scholar
  61. Schutz KE, Forkman B, Jensen P (2001) Domestication effects on foraging strategy, social behaviour and different fear responses: a comparison between the red junglefowl (Gallus gallus) and a modern layer strain. Appl Anim Behav Sci 74:1–14CrossRefGoogle Scholar
  62. Sewall KB, Soha JA, Peters S, Nowicki S (2013) Potential trade-off between vocal ornamentation and spatial ability in a songbird. Biol Lett 9:2013. doi: 10.1098/Rsbl.2013.0344 Unsp0344 CrossRefGoogle Scholar
  63. Sheldon BC (2002) Adaptive maternal effects and rapid population differentiation. Trends Ecol Evol 17:247–249. doi: 10.1016/S0169-5347(02)02459-X CrossRefGoogle Scholar
  64. Sheriff MJ, Love OP (2013) Determining the adaptive potential of maternal stress. Ecol Lett 16:271–280. doi: 10.1111/Ele.12042 PubMedCrossRefGoogle Scholar
  65. Spencer KA, MacDougall-Shackleton SA (2011) Indicators of development as sexually selected traits: the developmental stress hypothesis in context. Behav Ecol 22:1–9. doi: 10.1093/beheco/arq068 CrossRefGoogle Scholar
  66. Spencer KA, Verhulst S (2007) Delayed behavioral effects of postnatal exposure to corticosterone in the zebra finch (Taeniopygia guttata). Horm Behav 51:273–280. doi: 10.1016/j.yhbeh.2006.11.001 PubMedCrossRefGoogle Scholar
  67. Spencer KA, Buchanan KL, Goldsmith AR, Catchpole CK (2003) Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm Behav 44:132–139. doi: 10.1016/S0018-506x(03)00124-7 PubMedCrossRefGoogle Scholar
  68. Spencer KA, Wimpenny JH, Buchanan KL, Lovell PG, Goldsmith AR, Catchpole CK (2005) Developmental stress affects the attractiveness of male song and female choice in the zebra finch (Taeniopygia guttata). Behav Ecol Sociobiol 58:423–428. doi: 10.1007/s00265-005-0927-5 CrossRefGoogle Scholar
  69. Spencer KA, Evans NP, Monaghan P (2009) Postnatal Stress in Birds: a Novel Model of Glucocorticoid Programming of the Hypothalamic-Pituitary-Adrenal Axis. Endocrinology 150:1931–1934. doi: 10.1210/En.2008-1471 PubMedCrossRefGoogle Scholar
  70. Stamps J (2003) Behavioural processes affecting development: Tinbergen’s fourth question comes of age. Anim Behav 66:1–13. doi: 10.1006/anbe.2003.2180 CrossRefGoogle Scholar
  71. Tissier ML, Williams TD, Criscuolo F (2014) Maternal effects underlie ageing costs of growth in the zebra finch (Taeniopygia guttata). Plos One. doi: 10.1371/journal.pone.0097705 Google Scholar
  72. Tschirren B, Rutstein AN, Postma E, Mariette M, Griffith SC (2009) Short- and long-term consequences of early developmental conditions: a case study on wild and domesticated zebra finches. J Evolution Biol 22:387–395CrossRefGoogle Scholar
  73. Vallee M, Mayo M, Dellu F, LeMoal M, Simon H, Maccari S (1997) Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion. J Neurosci 17:2626–2636PubMedGoogle Scholar
  74. Wada H, Breuner CW (2008) Transient elevation of corticosterone alters begging behavior and growth of white-crowned sparrow nestlings. J Exp Biol 211:1696–1703. doi: 10.1242/Jeb.009191 PubMedCrossRefGoogle Scholar
  75. Walker BG, Boersma PD, Wingfield JC (2005a) Physiological and behavioral differences in Magellanic Penguin chicks in undisturbed and tourist-visited locations of a colony. Conserv Biol 19:1571–1577. doi: 10.1111/j.1523-1739.2005.00104.x CrossRefGoogle Scholar
  76. Walker BG, Wingfield JC, Boersma PD (2005b) Age and food deprivation affects expression of the glucocorticosteroid stress response in magellanic penguin (Spheniscus magellanicus) chicks. Physiol Biochem Zool 78:78–89PubMedCrossRefGoogle Scholar
  77. Weaver ICG et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854. doi: 10.1038/Nn1276 PubMedCrossRefGoogle Scholar
  78. Wilsterman K, Mast AD, Luu TH, Haussmann MF (2015) The timing of embryonic exposure to elevated temperature alters stress endocrinology in domestic chickens (Gallus domesticus). Gen Comp Endocr 212:10–16PubMedCrossRefGoogle Scholar
  79. Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone-behavior interactions: the “emergency life history stage”. Integr Comp Biol 38:191–206Google Scholar
  80. Zimmer C, Spencer KA (2014) Reduced resistance to oxidative stress during reproduction as a cost of early-life stress. Comp Biochem Phys A 183:9–13CrossRefGoogle Scholar
  81. Zimmer C, Boogert NJ, Spencer KA (2013) Developmental programming: cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm Behav 64:494–500. doi: 10.1016/j.yhbeh.2013.07.002 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  1. 1.Centre for Integrative EcologyDeakin UniversityVictoriaAustralia
  2. 2.Organismal Biology and EcologyUniversity of MontanaMissoulaUSA

Personalised recommendations