Journal of Ornithology

, Volume 156, Issue 3, pp 579–590 | Cite as

Habitat management varying in space and time: the effects of grazing and fire management on marshland birds

  • Thomas Oliver Mérő
  • László Lontay
  • Szabolcs Lengyel
Original Article

Abstract

Freshwater wetlands and marshes with extensive reed beds are important hotspots of biological diversity, but in the absence of proper management, they are subject to biotic homogenisation. We assessed the impact of spatiotemporally variable management by cattle grazing (for 4 years) and late-summer burning (1 or 3 years before the study) on both songbirds and non-passerines in a previously homogeneous reed bed. We surveyed birds using a combination of line transects and point counts in a quasi-experimental design comprising six treatment levels. Management increased both the diversity of marsh habitats and the diversity of bird species. The species richness and abundance of non-passerines (ducks and geese, wading birds, gulls and terns, rails, coots and grebes) was higher in recently burned than in unburned or old-burned patches. Species richness of farmland songbirds was higher in grazed than in non-grazed patches, and the richness and abundance of reed songbirds was higher in unburned, old-burned, and grazed patches than in recently burned patches. Total Shannon diversity and evenness of birds was lowest in areas with the most intensive treatment (patches grazed and twice-burned), whereas Simpson diversity was highest in these areas. Non-managed patches had fewer species and individuals of all groups except reed songbirds. The proportion of old reed was low in recently burned and grazed patches, and was similarly high in all other treatment areas. No other property of reed stands was influenced by management, and both the allocation and the effect of management were independent of water level. Spatiotemporally variable management by cattle grazing and late-summer burning may thus simultaneously benefit several groups of birds. The effect of burning alone disappeared in 3 years, even in the presence of grazing; thus it must be repeated every 2–3 years. We conclude that both management actions are necessary to establish and maintain highly diverse habitats for marshland bird communities.

Keywords

Habitat diversity Habitat heterogeneity Hortobágy National Park Intermediate disturbance hypothesis Mosaic vegetation Salt marsh 

Zusammenfassung

Habitatmanagement im Wandel von Raum und Zeit: der Effekt von Grasen und Feuer-Management auf Vögel der Sümpfe

Süßwasser-Feuchtgebiete und Sümpfe mit ausgebreiteten Schilfbetten sind wichtige Hotspots biologischer Diversität, sind aber bei fehlendem vernünftigem Management betroffen von biotischer Verarmung. Wir untersuchten den Einfluss von raumzeitlich verschiedenem Management durch Grasen von Rindern (über vier Jahre) und Abbrand im Spätsommer (ein oder drei Jahre vor der Untersuchung) sowohl auf Singvögel als auch auf Nicht-Singvögel in einem zuvor homogenen Schilfbett. Wir zählten Vögel in einer Kombination aus Linien-Transekten und Punkt-Zählungen in einem quasiexperimentellen Design aus sechs verschiedenen Bedingungen. Ein Management führte zu einer höheren Diversität der Sumpfhabitate und einer gesteigerten Diversität an Vögeln. Artenreichtum und Abundanz von Nicht-Singvögeln (Enten und Gänsen, Limikolen, Möwen und Seeschwalben, Rallen und Taucher) war höher in kürzlich abgebrannten als in nicht abgebrannten oder vor längerer Zeit abgebrannten Flächen. Der Artenreichtum von Singvögeln des Weidelands war höher in Flächen mit grasenden Rindern, als in solchen ohne, und Singvögel von Schilfgebieten zeigten einen höheren Artenreichtum und Abundanz in nicht abgebrannten, vor längerem abgebrannten oder von Vieh beweideten Flächen als in kürzlich abgebrannten Flächen. Die totale Shannon Diversität und Äquität von Vögeln war am geringsten, die Simpson Diversität dagegen am höchsten bei der intensivsten Behandlung der Flächen (Flächen mit grasenden Rindern und zweimal abgebrannt). Nicht gemanagte Flächen hatten weniger Arten und Individuen aller Gruppen außer Singvögeln von Schilfgebieten. Der Anteil alten Schilfs war gering in kürzlich abgebrannten und beweideten Flächen und ähnlich hoch in allen anderen Behandlungsformen. Keine andere Eigenschaft des Schilfs wurde durch das Management beeinflusst, und sowohl die Verteilung als auch die Auswirkung des Managements waren unabhängig vom Wasserstand. Raumzeitlich unterschiedliches Management durch Beweidung und Abbrand im Spätsommer könnte daher gleichzeitig verschiedenen Gruppen von Vögeln von Nutzen sein. Der Effekt durch Abbrand allein verschwand innerhalb von drei Jahren auch bei gleichzeitiger Beweidung, so dass es alle 2–3 Jahre wiederholt werden sollte. Wir kommen zum Schluss, dass beide Managementmaßnahmen notwendig sind, um eine hohe Diversität von Habitaten für Vogelgesellschaften von Sümpfen zu erhalten.

Supplementary material

10336_2015_1202_MOESM1_ESM.doc (1.6 mb)
Additional supplementary material may be found in the online version of this article: Supplementary Material Methods: Management needs: previous history, Fig. S1 Supplementary Material Results: Table S1, Table S2, Fig. S2 (DOC 1648 kb)

References

  1. Ausden M, Hall M, Pearson P, Strudwick T (2005) The effects of cattle grazing on tall-herb fen vegetation and molluscs. Biol Conserv 122:317–326CrossRefGoogle Scholar
  2. Báldi A (2004) Area requirements of passerine birds in the reed archipelago of Lake Velence. Acta Zool Hung 50:1–8Google Scholar
  3. Báldi A, Kisbenedek T (1998) Factors influencing the occurrence of Great White Egret (Egretta alba), Mallard (Anas platyrhynchos), Marsh Harrier (Circus aeroginosus), and Coot (Fulica atra) in the reed archipelago of Lake Velence, Hungary. Ekológia (Bratislava) 17:384–390Google Scholar
  4. Báldi A, Kisbenedek T (2000) Bird species number in an archipelago of reeds at Lake Velence, Hungary. Glob Ecol Biogeogr 9:451–461CrossRefGoogle Scholar
  5. Báldi A, Moskát C (1995) Effect of reed burning and cutting on breeding birds. Paper presented at the integrating people and wildlife for a sustainable future. In: Bissonette JA, Krausman PR (eds) Proceedings of the first international wildlife management congress, Bethesda, Maryland, USA, pp 637–642Google Scholar
  6. Benassi G, Battisti C, Luiselli L, Boitani L (2009) Area-sensitivity of three reed bed bird species breeding in Mediterranean marshland fragments. Wetl Ecol Manag 17:555–564CrossRefGoogle Scholar
  7. Bibby CJ, Burgess ND, Hill DA, Mustoe SH (2000) Bird census techniques, 2nd edn. Academic, LondonGoogle Scholar
  8. Bobbink R, Beltman B, Verhoeven JTA, Whigham DF (2006) Wetlands: functioning biodiversity conservation and restoration. Springer, BerlinCrossRefGoogle Scholar
  9. Causarano F, Battisti C (2009) Effect of seasonal water level decrease on a sensitive bird assemblage in a Mediterranean wetland. Rend Lincei 20:211–218CrossRefGoogle Scholar
  10. Causarano F, Battisti C, Sorace A (2009) Effect of winter water stress on the breeding bird assemblages of a remnant wetland in Central Italy. Revue d’Écologia (Terre Vie) 64:61–72Google Scholar
  11. Celada C, Bogliani G (1993) Breeding bird communities in fragmented wetlands. Bollettino di Zoologia 60:73–80CrossRefGoogle Scholar
  12. Christensen NL (1997) Managing for heterogeneity and complexity on dynamic landscapes. In: Pickett STA, Ostfeld RS, Shachak M, Likens GE (eds) The Ecological basis for conservation: heterogeneity, ecosystems, and biodiversity. Chapman & Hall, New York, pp 167–186CrossRefGoogle Scholar
  13. Connell JH (1978) Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199(4335):1302–1310PubMedCrossRefGoogle Scholar
  14. Connor EF, McCoy ED (2001) Species-area relationships. In: Levin SA (ed) Encyclopedia of biodiversity, vol 5. Academic, London, pp 397–411CrossRefGoogle Scholar
  15. Cross DH, Fleming KL (1989) Control of Phragmites or common reed. In: Cross DH, Wohs P (eds) Waterfowl management handbook. US, Fish Wildl Serv, pp 1–5Google Scholar
  16. Déri E, Magura T, Horváth R, Kisfali M, Ruff G, Lengyel S, Tóthmérész B (2011) Measuring the short-term success of grassland restoration: the use of habitat affinity indices in ecological restoration. Restor Ecol 19:520–528CrossRefGoogle Scholar
  17. Ditlhogo MKM, James R, Laurence BR, Sutherland WJ (1992) The effects of conservation management of reed beds. I. The invertebrates. J Appl Ecol 29:265–276CrossRefGoogle Scholar
  18. Fuhlendorf SD, Engle DM (2001) Restoring heterogeneity on rangelands: ecosystem management based on evolutionary grazing patterns. Bioscience 51:625–632CrossRefGoogle Scholar
  19. Gibbons DW, Gregory RD (2006) Birds. In: Sutherland WJ (ed) Ecological census techniques, 2nd edn. Cambridge University, Cambridge, pp 308–344CrossRefGoogle Scholar
  20. Graveland J (1998) Reed die-back, water level management and decline of the Great Reed Warbler Acrocephalus arundinaceus in The Netherlands. Ardea 86:187–201Google Scholar
  21. Graveland J (1999) Effects of reed cutting on density and breeding success of Reed Warbler Acrocephalus scirpaceus and Sedge Warbler A. schoenobaenus. J Avian Biol 30:469–482CrossRefGoogle Scholar
  22. Gregory RD, Gibbons DW, Donald PF (2004) Bird census and survey techniques. In: Sutherland WJ, Newton I, Green RE (eds) Bird ecology and conservation. Oxford University, Oxford, pp 35–40Google Scholar
  23. Groom MJ, Meffe GK, Carroll CR (2006) Principles of conservation biology. Sinauer Associates, SunderlandGoogle Scholar
  24. Hardman CJ, Harris DB, Sears J, Droy N (2012) Habitat associations of invertebrates in reedbeds, with implications for management. Aquatic Conserv 22:813–826CrossRefGoogle Scholar
  25. Hartnett DC, Hickman KR, Fischer WLE (1996) Effects of bison grazing, fire, and topography on floristic diversity in tallgrass prairie. J Range Manag 49:413–420CrossRefGoogle Scholar
  26. Kelemen J (2002) Védett és érzékeny természeti területek mezőgazdálkodásának alapjai (Fundamentals of agriculture on protected and sensitive natural areas). In: Ángyán J, Tardy J, Vajnáné Madarassy A (eds) Legeltetés (Grazing). Mezőgazda Kiadó, Budapest, pp 380–394Google Scholar
  27. Korner I (2013) Long term monitoring of grazing in salt habitats on the eastern shore of Lake Neusiedl. In: Paper presented at the conference volume, 5th Symposium for research in protected areas, MittersillGoogle Scholar
  28. Lengyel S, Varga K, Kosztyi B, Lontay L, Déri E, Török P, Tóthmérész B (2012) Grassland restoration to conserve landscape-level biodiversity: a synthesis of early results from a large-scale project. Appl Veg Sci 15:264–276CrossRefGoogle Scholar
  29. Lockwood JL, McKinney ML (2001) Biotic homogenization: a sequential and selective process. In: Lockwood JL, McKinney ML (eds) Biotic homogenization. Kluwer Academic/Plenum, New York, pp 1–17CrossRefGoogle Scholar
  30. Lougheed VL, McIntosh MD, Parker CA, Stevenson JR (2008) Wetland degradation leads to homogenization of the biota at local and landscape scales. Freshw Biol 53:2402–2413CrossRefGoogle Scholar
  31. Magurran AE (2004) Measuring biological diversity. Blackwell, OxfordGoogle Scholar
  32. Magurran AE, McGill BJ (2011) Biological diversity: frontiers in measurement and assessment. Oxford University, New YorkGoogle Scholar
  33. Margoluis R, Stem S, Salafsky N, Brown M (2009) Using conceptual models as a planning and evaluation tool in conservation. Eval Prog Plan 32:138–147CrossRefGoogle Scholar
  34. McCabe DJ, Gotelli NJ (2000) Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia 124:270–279CrossRefGoogle Scholar
  35. Mérő TO, Žuljević A, Varga K, Bocz R, Lengyel S (2014) Effect of reed burning and precipitation on the breeding success of Great Reed Warbler, Acrocephalus arundinaceus, on a mining pond. Turk J Zool 38:622–630CrossRefGoogle Scholar
  36. Moga CI, Öllerer K, Hartel T (2010) The effect of reed burning on the habitat occupancy of passerine species. North-West J Zool 6:90–94Google Scholar
  37. Neto JM (2006) Nest-site selection and predation in Savi’s Warblers Locustella luscinioides. Bird Study 53:171–176CrossRefGoogle Scholar
  38. Nummi P, Paasivaara A, Suhonen S, Pöysa H (2013) Wetland use by brood-rearing female ducks in a boreal forest landscape: the importance of food and habitat. Ibis 155:68–79CrossRefGoogle Scholar
  39. Pan X (2013) Fundamental equations for species-area theory. Sci Rep 3:1334. doi:10.1038/srep01334 PubMedCentralPubMedGoogle Scholar
  40. Paracuellos M, Tellería JL (2004) Factors affecting the distribution of a waterbird community: the role of habitat configuration and bird abundance. Waterbirds 27:446–453CrossRefGoogle Scholar
  41. Perrins C, Cramp S (1998) The birds of the western Palearctic CD-ROM. Oxford University Press, OxfordGoogle Scholar
  42. Poulin B, Lefebvre G (2002) Effect of winter cutting on the passerine breeding bird assemblage in French Mediterranean reedbeds. Biodivers Conserv 11:1567–1581CrossRefGoogle Scholar
  43. Poulin B, Lefebvre G, Mauchamp A (2002) Habitat requirement of passerines and reedbed management in southern France. Biol Conserv 107:315–325CrossRefGoogle Scholar
  44. Pöysa H, Vaananen V-M (2014) Drivers of breeding numbers in a long-distance migrant, the Garganey (Anas querquedula): effects of climate and hunting pressure. J Ornithol 155:679–687CrossRefGoogle Scholar
  45. Rácz IA, Déri E, Kisfali M, Batiz Z, Varga K, Szabó G, Lengyel S (2013) Early changes of orthopteran assemblages after grassland restoration: a comparison of space-for-time substitution versus repeated measures monitoring. Biodivers Conserv 22:2321–2335CrossRefGoogle Scholar
  46. Redolfi De Zan L, Battisti C, Carpaneto GM (2010) Effect of spring water stress induced by fishery farming on two duck species Anas platyrhynchos L. and Anas crecca L. in a Mediterranean wetland. Pol J Ecol 58:599–604Google Scholar
  47. Salafsky N, Salzer D, Stattersfield AJ, Hilton-Taylor C, Neugarten R, Butchart SHM, Collen B, Cox N, Master LL, O’Connor S, Wilkie D (2008) Standard lexicon for biodiversity conservation: unified classification of threats and actions. Conserv Biol 22:897–911PubMedCrossRefGoogle Scholar
  48. Salafsky N, Butchart SHM, Salzer D, Stattersfield AJ, Neugarten R, Hilton-Taylor C, Collen B, Master LL, O’Connor S, Wilkie D (2009) Pragmatism and practice in classifying threats: reply to Balmford. Conserv Biol 23:488–493CrossRefGoogle Scholar
  49. Schmidt MH, Lefebvre G, Poulin B, Tscharntke T (2005) Reed cutting affects arthropod communities, potentially reducing food for passerine birds. Biol Conserv 121:157–166CrossRefGoogle Scholar
  50. Schweiger EW, Leibowitz SG, Hyman JB, Foster WE, Downing MC (2002) Synoptic assessment of wetland function: a planning tool for protection of wetland species biodiversity. Biodivers Conserv 11:379–406CrossRefGoogle Scholar
  51. Schwilk DW, Keeley JE, Bond WJ (1997) The intermediate disturbance hypothesis does not explain fire and diversity pattern in fynbos. Plant Ecol 132:77–84CrossRefGoogle Scholar
  52. Tanneberger F, Tegetmeyer C, Dylawerski M, Flade M, Joosten H (2009) Commercially cut reed as a new and sustainable habitat for the globally threatened aquatic warbler. Biodivers Conserv 18:1475–1489CrossRefGoogle Scholar
  53. Vadász C, Német Á, Biró C, Csörgő T (2008) The effect of reed cutting on the abundance and diversity of breeding passerines. Acta Zool Hung 54:177–188Google Scholar
  54. Valkama E, Lyytinen S, Koricheva J (2008) The impact of reed management on wildlife: a meta-analytical review of European studies. Biol Conserv 141:364–374CrossRefGoogle Scholar
  55. van der Toorn J, Mook JH (1982) The influence of environmental factors and management on stands of Phragmites australis. II. Effects of burning, frost and insect damage on shoot density and shoot size. J Appl Ecol 19:477–499CrossRefGoogle Scholar
  56. van Deursen EJM, Drost HJ (1990) Defoliation and treading by cattle of reed Phragmites australis. J Appl Ecol 27:284–297CrossRefGoogle Scholar
  57. Vásárhelyi T (1995) Nature conservational aspects of reedbed management. In: Vásárhelyi T (ed) Nádasok élővilága (Biota of reedbeds). Hungarian Natural History Museum, BudapestGoogle Scholar
  58. Vinton MA, Hartnett DC, Finck EJ, Briggs JM (1993) Interactive effects of fire, bison (Bison bison) grazing, and plant community composition in tallgrass prairie. Am Midl Nat 129:10–18CrossRefGoogle Scholar
  59. Vulink JT, Drost HJ, Jans L (2000) The influence of different grazing regimes on Phragmites and shrub vegetation in the well-drained zone of a eutrophic wetland. Appl Veg Sci 3:73–80CrossRefGoogle Scholar
  60. Wagner KI, Gallagher SK, Hayes M, Lawrence BA, Zedler JB (2008) Wetland restoration in the new millennium: do research efforts match opportunities? Restor Ecol 16(3):367–372. doi:10.1111/j.1526-100X.2008.00433.x CrossRefGoogle Scholar
  61. Wheeler BD, Shaw SC, Fojt J, Robertson RA (1995) Restoration of temperate wetlands. Wiley, New YorkGoogle Scholar
  62. Wiens JA (1997) The emerging role of patchiness in conservation biology. In: Pickett STA, Ostfeld RS, Shachak M, Likens GE (eds) The ecological basis for conservation: heterogeneity, ecosystems, and biodiversity. Chapman & Hall, New York, pp 93–107CrossRefGoogle Scholar
  63. Zacchei D, Battisti C, Carpaneto GM (2011) Contrasting effects of water stress on wetland-obligated birds in a semi-natural Mediterranean wetland. Lake Reserv Manag 16:281–286CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Thomas Oliver Mérő
    • 1
  • László Lontay
    • 2
  • Szabolcs Lengyel
    • 3
  1. 1.Nature Protection and Study Society - NATURASomborSerbia
  2. 2.Aggtelek National Park DirectorateJósvafőHungary
  3. 3.Department of Tisza River Research, Centre for Ecological Research, Danube Research InstituteHungarian Academy of SciencesDebrecenHungary

Personalised recommendations