Journal of Ornithology

, Volume 156, Issue 4, pp 1067–1074 | Cite as

Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs

  • Alan FeducciaEmail author
  • Stephen A. Czerkas
Original Article


Considerable debate surrounds the numerous avian-like traits in core maniraptorans (oviraptorosaurs, troodontids, and dromaeosaurs), especially in the Chinese Early Cretaceous oviraptorosaur Caudipteryx, which preserves modern avian pennaceous primary remiges attached to the manus, as is the case in modern birds. Was Caudipteryx derived from earth-bound theropod dinosaurs, which is the predominant view among palaeontologists, or was it secondarily flightless, with volant avians or theropods as ancestors (the neoflightless hypothesis), which is another popular, but minority view. The discovery here of an aerodynamic propatagium in several specimens provides new evidence that Caudipteryx (and hence oviraptorosaurs) represent secondarily derived flightless ground dwellers, whether of theropod or avian affinity, and that their presence and radiation during the Cretaceous may have been a factor in the apparent scarcity of many other large flightless birds during that period.


Caudipteryx Propatagium Maniraptora Oviraptorosaurs Microraptor Lower Cretaceous 


Die „Neoflightless“-Hypothese im Test: Halsflughaut (Propatagium) offenbart flugfähige Vorfahren der Oviraptorosauria

Es gibt eine ausgiebige Debatte über die zahlreichen vogelähnlichen Eigenheiten der Maniraptora (Oviraptosaurus, Troodontidae, Dromaeosaurus), vor allem des (gefiederten) Oviraptorosauria  Caudipteryx aus der frühen chinesischen Kreidezeit, der genau wie rezente Vögel Handschwingen hatte, die an den Handknochen ansetzen. Stammt Caudipteryx von den nur am Erdboden lebenden Theropoda ab - die unter den Paläontologen vorherrschende Meinung -, oder war er sekundär flugunfähig und stammte von flugfähigen Theropoden ab - die „Neoflightless“-Hypothese, eine alternative, wenn auch nur von Wenigen unterstützte These. Die hier berichtete Entdeckung einer aerodynamischen Halsflughaut bei einigen Exemplaren gibt neue Hinweise darauf, dass Caudipteryx (und damit auch Oviraptorosaurus) einen sekundär flugunfähigen Bodenbewohner darstellte, ganz gleich, ob er näher mit den Theropoden oder den Vögeln verwandt ist. Sein Vorkommen und seine Ausbreitung während der Kreidezeit war möglicherweise ein Faktor im offensichtlichen Mangel an anderen großen, flugunfähigen Vögeln während dieser Periode.



We thank Sylvia J. Czerkas, Director of the Dinosaur Museum, for review and other important discussion. Zhonghe Zhou, Institute for Vertebrate Paleontology and Paleoanthropology, Beijing, identified a propatagium in a specimen of Caudipteryx in the collections of the IVPP and kindly provided useful discussion and photos of specimens under his care. We thank Ji Qiang of the Institute of Geology, Chinese Academy of Geological Sciences for help and discussion. The specimen on loan from the Institute of Geology has been returned to China. Susan Whitfield rendered the figures.


  1. Agnolín FL, Novas FE (2013) Avian ancestors: a review of the phylogenetic relationships of the theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae. Springer Briefs in Earth Systems Sciences, Springer, Dordrecht, Heidelberg, Springer SBMCrossRefGoogle Scholar
  2. Altangerel P, Norell MA, Chiappe LM, Clark JM (1993) Flightless bird from the Cretaceous of Mangolia. Nature 262:623–626CrossRefGoogle Scholar
  3. Balanoff AM, Xu X, Kobayashi Y, Matsufune Y, Norell MA (2009) Cranial osteology of the theropod dinosaur Incisivosaurus gauthieri (Theropoda: Oviraptorosauria). Am Mus Novitates 3651:1–36CrossRefGoogle Scholar
  4. Barrett PM, Hilton JM (2006) The Jehol Biota (Lower Cretaceous, China): new discoveries and future prospects. Integr Zool 1:11–17CrossRefGoogle Scholar
  5. Brown RE, Cogley AC (1996) Contributions of the propatagium to avian flight. J Exp Zool 276:112–124CrossRefGoogle Scholar
  6. Buffetaut E, Le Loeuff J (1998) A new giant ground bird from the Upper Cretaceous of southern France. J Geol Soc London 155:1–4CrossRefGoogle Scholar
  7. Chatterjee S, Templin RJ (2012) Palaeoecology, aerodynamics, and the origin of avian flight. In: Talent JA (ed) Earth and life, international year of planet earth. Springer, New York, pp 585–612Google Scholar
  8. Chiappe L, Lacasa-Ruiz J (2002) Noguerornis gonzalezi (Aves: Ornithothoraces) from the Early Cretaceous of Spain. In: Chiappe LM, Witmer L (eds) Mesozoic birds: above the heads of dinosaurs. University of California Press, Berkeley, pp 230–239Google Scholar
  9. Czerkas SA, Feduccia A (2014) Jurassic archosaur is a non-dinosaurian bird. J Ornithol 155:841–851CrossRefGoogle Scholar
  10. de Beer G (1956) The evolution of ratites. Bull Brit Mus (Nat Hist) 4:59–70Google Scholar
  11. Elzanowski A (1999) A comparison of the jaw skeleton in theropods and birds, with a description of the palate in the Oviraptoridae. Smithsonian Contr Paleobiol 89:311–323Google Scholar
  12. Feduccia A (2012) Riddle of the feathered dragons. Yale University Press, New HavenGoogle Scholar
  13. Feduccia A (2013) Bird origins anew. Auk 130:1–12CrossRefGoogle Scholar
  14. Feduccia A (2014) Avian extinction at the end of the Cretaceous: Assessing the magnitude and subsequent explosive radiation. Cret Res 50:1–15CrossRefGoogle Scholar
  15. Foth C, Tischlinger H, Rauhut OWM (2014) New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511(7507):79–82CrossRefPubMedGoogle Scholar
  16. Gee H (1998) Birds and dinosaurs—the debate is over. Nature News (online). doi: 10.1038/news980702-8 Google Scholar
  17. Gong E-P, Martin LD, Burnham DA, Falk AF, L-h Hou (2012) A new species of Microraptor from the Jehol Biota of northeastern China. Palaeoworld 21:81–91CrossRefGoogle Scholar
  18. Hertel F, Campbell KE (2007) The antitrochanter or birds: form and function in balance. Auk 124:789–805CrossRefGoogle Scholar
  19. Hone DWE, Tischlinger H, Xing X, Zhang F (2010) The extent of the preserved feathers on the four-winged dinosaur Microraptor gui under ultraviolet light. PLoS One 5(2):e9223. doi: 10.1371/journal.pone.0009223 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Hu D, L-h Hou, Zhang L, Xu X (2009) A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461:640–643CrossRefPubMedGoogle Scholar
  21. James FC, Pourtless JA IV (2009) Cladistics and the origin of birds: a review and two new analyses. Orn Monogr 66:1–78CrossRefGoogle Scholar
  22. Ji Q, Currie PJ, Norell MA, Ji S-A (1998) Two feathered dinosaurs from northeastern China. Nature 393:753–761CrossRefGoogle Scholar
  23. Jones TD, Farlow JO, Ruben JA, Henderson DM, Hillenius WJ (2000) Cursoriality in bipedal archosaurs. Nature 406(6797):716–718CrossRefPubMedGoogle Scholar
  24. Kavanau JL (2010) Secondarily flightless birds or Cretaceous non-avian theropods. Med Hypotheses 74(2):275–276CrossRefPubMedGoogle Scholar
  25. Kundrát M (2007) Avian-like attributes of a virtual brain model of the oviraptorid theropod Conchoraptor gracilis. Naturwissenschaften 994:499–504CrossRefGoogle Scholar
  26. Kundrát M, Janáček J (2007) Cranial pneumatization and auditory perceptions of the oviraptorid dinosaur Conchoraptor gracilis (Theropoda, Maniraptora) from the Late Cretaceous of Mongolia. Naturwissenschaften 94:769–778CrossRefPubMedGoogle Scholar
  27. Livesey BC (1995) Heterochrony and the evolution of avian flightlessness. In: McNamara EJ (ed) Evolutionary change and heterochrony. John Wiley & Sons, New York, pp 169–193Google Scholar
  28. Lowe PR (1928a) Studies and observations bearing on the phylogeny of the Ostrich and its allies. Proc Zool Soc London 1928:185–247Google Scholar
  29. Lowe PR (1928b) A description of Atlantisia rogersi, the diminutive and flightless rail of Inaccessible Island (Southern Atlantic) with some notes on flightless rails. Ibis 1928:99–131Google Scholar
  30. Lowe PR (1934) On the evidence of the existence of two species of Steamer Ducks (Tachyeres), and primary and secondary flightlessness in birds. Ibis 1934:467–495Google Scholar
  31. Lü J, Dong Z, Azuma Y, Barsbold R, Tomida Y (2002) Oviraptorosaurs compared to birds. In: Zhou Z, Zhang F (eds) Proc 5th Symp soc avian paleontol evol. Science Press, Beijing, pp 175–189Google Scholar
  32. Martin LD, Lim JD (2005) Soft body impression of the hand of Archaeopteryx. Curr Sci 89(7):1089–1090Google Scholar
  33. Maryańska T, Osmólska H, Wolsan M (2002) Avialan status for Oviraptorosauria. Acta Palaeontol Polonica 47(1):97–116Google Scholar
  34. Mayr G, Pohl B, Peters DS (2005) A well-preserved Archaeopteryx specimen with theropod features. Science 310:1483–1486CrossRefPubMedGoogle Scholar
  35. McGowan C (2009) The wing musculature of the Weka (Gallirallus australis) a flightless rail endemic to New Zealand. J Zool 210(3):305–346CrossRefGoogle Scholar
  36. Olshevsky G (1992) A revision of the parainfraclass Archosauria Cope, 1869, excluding the advanced Crocodylia. Mesozoic Meanderings 2:1–268Google Scholar
  37. Padian K, Chiappe LM (1998) The origin of birds and their flight. Sci Am 278:38–47CrossRefPubMedGoogle Scholar
  38. Paul GS (2002) Dinosaurs of the air: The evolution and loss of flight in dinosaurs and birds. Johns Hopkins University Press, BaltimoreGoogle Scholar
  39. Prum RO (2010) Moulting tail feathers in a juvenile ovraptorsaur. Nature Rapid Commun 468:E1Google Scholar
  40. Sereno PC (1999) The evolution of dinosaurs. Science 284:2137–2147CrossRefPubMedGoogle Scholar
  41. Vasquez RJ (1994) Functional osteology of avian wrist and evolution of flapping flight. J Morph 211:259–268CrossRefGoogle Scholar
  42. Xu X, Norell MA (2006) Non-avian dinosaur fossils from the Lower Cretaceous Jehol Group of western Liaoning, China. Geol J 41:419–437CrossRefGoogle Scholar
  43. Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four-winged dinosaurs from China. Nature 421:335–340CrossRefPubMedGoogle Scholar
  44. Xu X, You H, Du K, Han F (2011) An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475:465–470CrossRefPubMedGoogle Scholar
  45. Zhang F, Zhou Z, Xu X, Wang X (2002) A juvenile coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften 89(9):394–398CrossRefPubMedGoogle Scholar
  46. Zhou Z, Wang X (2000) A new species of Caudipteryx from the Yixian Formation of Liaoning, northeast China. Vert Palasiatica 38(2):113–130Google Scholar
  47. Zhou Z, Zhang F (2006) Mesozoic birds of China. Vert PalAsia 44(1):74–98Google Scholar
  48. Zhou Z, Wang X, Zhang F, Xu X (2000) Important features of Caudipteryx—evidence from two nearly complete new specimens. Vert Palasiatica 38(4):241–254Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  1. 1.Department of BiologyUniversity of North CarolinaChapel HillUSA
  2. 2.The Dinosaur MuseumBlandingUSA

Personalised recommendations