Journal of Ornithology

, Volume 156, Issue 4, pp 877–892 | Cite as

Reassessment of the size of the Scopoli’s Shearwater population at its main breeding site resulted in a tenfold increase: implications for the species conservation

  • Pierre Defos du Rau
  • Karen Bourgeois
  • Mathieu Thévenet
  • Lise Ruffino
  • Sylvain Dromzée
  • Ridha Ouni
  • Awatef Abiadh
  • Roger Estève
  • Jean-Patrick Durand
  • Lorraine Anselme
  • Gilles Faggio
  • Jaber Mohamed Yahya
  • Hamid Rguibi
  • Michel Renda
  • Bayrem Miladi
  • Hennabaal Hamrouni
  • Slim Alilech
  • Aymen Nefla
  • Wahbi Jaouadi
  • Sofiene Agrebi
  • Sébastien Renou
Original Article

Abstract

Scopoli’s Shearwater (Calonectris diomedea) is a Procellariiform endemic to the Mediterranean Basin which is considered to be vulnerable in Europe due to recent local declines and its susceptibility to both marine and terrestrial threats. In the 1970s–1980s, its population size was estimated at 57,000–76,000 breeding pairs throughout the Mediterranean Basin, with the largest colony, estimated at 15,000–25,000 pairs, found on Zembra Island, Tunisia. The objectives of our study were to re-estimate the size of the breeding population on Zembra Island, to reassess the global population size of the species, and to analyse the implications of these findings on status and conservation of this species in the Mediterranean. Using distance sampling, we estimated the Zembra breeding population to be 141,780 pairs (95 % confidence interval 113,720–176,750 pairs). A review of the most recent data on populations of this species throughout the Mediterranean Basin led us to estimate its new global population size at 141,000–223,000 breeding pairs. Using the demographic invariant and potential biological removal approaches, we estimated the maximum number of adults which could be killed annually by all non-natural causes without causing a population decline to be 8800 (range 7700–9700) individuals, of which could be 3700 breeders. Although these results are less alarming in the context of species conservation than previously thought, uncertainties associated with global population size, trends and major threats still raise questions on the future of this species. More generally, we show how a monitoring strategy for a bird supposed to be relatively well known overall can be potentially misleading due to biases in survey design. The reduction of such biases would therefore appear to be an unavoidable prerequisite in cryptic species monitoring before any reliable inference on the conservation status of the species can be drawn.

Keywords

Breeding population census Calonectris diomedea Distance sampling Zembra Island 

Zusammenfassung

Eine neue Populationsschätzung von Gelbschnabel-Sturmtauchern an ihrem Hauptbrutvorkommen ergabe inen zehnfachen Anstieg: Konsequenzen für den Artenschutz. Der Gelbschnabel-Sturmtaucher Calonectris diomedea ist eine für den Mittelmeerraum endemische Röhrennasenart, die in Europa aufgrund aktueller örtlicher Bestandsabnahmen sowie ihrer Anfälligkeit für sowohl marine als auch terrestrische Bedrohungen als gefährdet gilt. Die Populationsstärke der Art wurde auf 57.000–76.000 Brutpaare geschätzt, wobei die größte Kolonie auf der tunesischen Insel Zembra in den 1970–1980er Jahren mit 15.000–25.000 Brutpaaren veranschlagt wurde. Ziele unserer Studie waren eine Neueinschätzung der Brutpopulation auf Zembra, eine Neubewertung der globalen Populationsgröße sowie eine Analyse der Implikationen für den Status und Schutz der Art im Mittelmeerraum. Mittels Distance Sampling schätzten wir die Brutpopulation auf Zembra auf 141.780 Paare (95 % Konfidenz intervall: 113.720–176.750). Wir sichteten die meisten aktuellen Daten zu den Populationen der Art im gesamten Mittelmeerbecken und gelangten so zu einer neuen Schätzung der globalen Populationsgröße von 141.000–223.000 Brutpaaren. Mithilfe von Methoden auf der Basis demografischer Invarianz und PBR (PotentialBiologicalRemoval) schätztenwir die Höchstzahl erwachsener Vögel, die jährlich durch nicht natürliche Ursachen umkommen könnten, ohne einen Populationseinbruch zu verursachen, auf 8.800 (Spanne: 7.700–9.700) Individuen, unter diesen 3.700 Brutvögel. Obwohl diese Ergebnisse weniger bedrohlich für den Erhalt der Art sind als zuvor angenommen, stellen Unsicherheiten bezüglich globaler Populationsgrößen, Bestandstrends und Hauptbedrohungsfaktoren nach wie vor die Zukunft der Art in Frage. Allgemein gesagt konnten wir zeigen, wie eine Monitoring-Strategie bei einer insgesamt scheinbar recht gut erforschten Vogelart aufgrund von Unausgewogenheiten in der Planung potenziell in die Irre führen kann. Solche Unausgewogenheiten möglichst zu reduzieren, erscheint daher eine unabdingbare Voraussetzung für das Monitoring kryptischer Arten, bevor verlässliche Aussagen zu ihrem Schutzstatus möglich sind.

Notes

Acknowledgments

We thank the Tunisian agency for coastline conservation and management (APAL), especially Habib Ben Moussa and Saba Guellouz, and the Tunisian Army for granting permission and providing support to undertake this research. We are grateful to the PIM initiative (Conservatoire du Littoral, France) which has been in charge of the technical and the scientific organization of this operation and to the various institutions, NGOs and scientists from all around the Mediterranean who provided information. Many thanks to Fabrice Bernard, coordinator, and to Sami Benhaj, technical adviser of the PIM initiative. We are grateful to Dr. Alan Johnson and Patricia Rigby for improvement of the English and to Dr. Daniel Oro, Dr. Ross Wanless and three anonymous reviewers for their constructive comments on the manuscript. This study complies with the current laws of Tunisia.

This article has been written in the memory of “Asfour” Abdallah Ben Dafer from Zembra.

References

  1. Arcos JM, Bécares J, Rodríguez B, Ruiz A (2009) Áreas Importantes para la Conservación de las Aves Marinas en España. LIFE04NAT/ES/000049–Sociedad Española de Ornitología (SEO/BirdLife), Madrid. Available at: www.seo.org/avesmarinas.Accessed. Accessed 27 Oct 2014
  2. Baccetti N, Sposimo P, Giannini F (2005) Artificial lights and mortality of Cory’s Shearwater Calonectris diomedea on a Mediterranean island. Avocetta 29:89–91Google Scholar
  3. Baccetti N, Capizzi D, Corbi F, Massa B, Nissardi S, Spano G, Sposimo P (2009) Breeding shearwaters on Italian islands: population size, island selection and co-existence with their main alien predator, the Black Rat. Riv Ital Orn 78:83–100Google Scholar
  4. Báez JC, García-Barcelona S, Mendoza M, Ortiz de Urbina JM, Real R, Macías D (2014) Cory’s Shearwater by-catch in the Mediterranean Spanish commercial longline fishery: implications for management. Biodivers Conserv 23:661–681CrossRefGoogle Scholar
  5. Belda EJ, Sánchez A (2001) Seabird mortality on longline fisheries in the Western Mediterranean: factors affecting bycatch and proposed mitigating measures. Biol Conserv 98:357–363CrossRefGoogle Scholar
  6. BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife Conservation Series No. 12. BirdLife International, CambridgeGoogle Scholar
  7. BirdLife International (2014) Species factsheet: Calonectris diomedea. Available at: http://www.birdlife.org/datazone/species/factsheet/45061132. Accessed 25 Oct 2014
  8. Boano G, Brichetti P, Foschi UF (2010) ‘La Niña’-driven Atlantic storms affect winter survival of Mediterranean Cory’s Shearwaters. Ital J Zool 77:460–468CrossRefGoogle Scholar
  9. Borg JJ, Cachia-Zammit R (1998) Monitoring Cory’s Shearwater Calonectris diomedea populations in a hostile environment. In: Walmsley J, Goutner V, El Hili A, Sultana J (eds) Ecologie des oiseaux marins et gestion intégrée du littoral en Méditerranée—Proceedings of the 4th MEDMARAVIS seabird symposium. Les Amis des Oiseaux/Medmaravis, Hammamet, pp 31–47Google Scholar
  10. Bourgeois K, Vidal E (2009) Suivi des populations de puffins des Îles d’Hyères. Bilan 2003–2009 et notes méthodologiques. Report for the Port-Cros National Park. IMBE, MarseilleGoogle Scholar
  11. Brichetti P, Foschi UF, Boano G (2000) Does El Niño affect survival rate of Mediterranean populations of Cory’s Shearwater? Waterbirds 23:147–154Google Scholar
  12. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas DL (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, OxfordGoogle Scholar
  13. Budinski I, Čulina A, Mikulič K, Jurinovič L (2010) Izrada akcijskog plana zaštiteptica iz porodice zovoja (Procellaridae) u Hrvatskoj; Izvještaj za 2010. Udruga za biološka istraživanja (BIOM), ZagrebGoogle Scholar
  14. Burnham KP, Anderson DR (2002) Model selection and multi model inference. A practical information—theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  15. Cadiou B, Pons JM, Yésou P (2004) Oiseaux marins nicheurs de France métropolitaine (1960–2000). Biotope, MèzeGoogle Scholar
  16. Cadiou B; les coordinateurs régionaux, coordinateurs départementaux, coordinateurs espèce (2013) Cinquième recensement national des oiseaux marins nicheurs en France métropolitaine 2009–2012, 2nd synthèse: bilan provisoire 2009–2012. Groupement d’Intérêt Scientifique Oiseaux Marins, Agence des aires marines protégées (AAMP), BrestGoogle Scholar
  17. Capizzi A, Baccetti N, Sposimo P (2010) Prioritizing rat eradication on islands by cost and effectiveness to protect nesting seabirds. Biol Conserv 143:1716–1727CrossRefGoogle Scholar
  18. Cooper J, Baccetti N, Belda EJ, Borg JJ, Oro D, Papaconstantinou C, Sánchez A (2003) Seabird mortality from longline fishing in the Mediterranean Sea and Macaronesian waters: a review and a way forward. Sci Mar 67:57–64CrossRefGoogle Scholar
  19. Dillingham PW, Fletcher D (2008) Estimating the ability of birds to sustain additional human-caused mortalities using a simple decision rule and allometric relationships. Biol Conserv 141:1783–1792CrossRefGoogle Scholar
  20. Dillingham PW, Fletcher D (2011) Potential biological removal of albatrosses and petrels with minimal demographic information. Biol Conserv 144:1885–1894CrossRefGoogle Scholar
  21. Dimech M, Darmanin M, Caruana R, Raine H (2009) Preliminary data on seabird by-catch from the Maltese longline fishery (Central Mediterranean). Collect Vol Sci Pap ICCAT 64:2335–2341Google Scholar
  22. Dunn E (2007) The case for a Community Plan of Action for reducing incidental catch of seabirds in longline fisheries. A report from BirdLife International’s Global Seabird Programme. BirdLife International, CambridgeGoogle Scholar
  23. García-Barcelona S, Ortiz de Urbina JM, de la Serna JM, Alot E, Macías D (2010) Seabird by catch in Spanish Mediterranean large pelagic longline fisheries, 2000–2008. Aquat Living Resour 23:363–371CrossRefGoogle Scholar
  24. Gaultier T (1978) Contribution à l’étude de Calonectris diomedea de l’île de Zembra (Tunisie). Les Amis des Oiseaux, Institut de Recherche scientifique et technique de Tunis, TunisGoogle Scholar
  25. Genovart M, Sanz-Aguilar A, Fernández-Chacón A, Igual JM, Pradel R, Forero MG, Oro D (2013a) Contrasting effects of climatic variability on the demography of a trans-equatorial migratory seabird. J Anim Ecol 82:121–130CrossRefPubMedGoogle Scholar
  26. Genovart M, Thibault JC, Igual JM, Del Mar Bauzà-Ribot M, Rabouam C, Bretagnolle V (2013b) Population structure and dispersal patterns within and between Atlantic and Mediterranean populations of a large-range pelagic seabird. PLoS ONE 8:e70711PubMedCentralCrossRefPubMedGoogle Scholar
  27. Grinsted A, Moore JC, Jevrejeva S (2013) Projected Atlantic hurricane surge threat from rising temperatures. Proc Natl Acad Sci USA 110:5369–5373PubMedCentralCrossRefPubMedGoogle Scholar
  28. Hines JE (2000) Program ‘‘DOBSERV’’: user instructions. USGS Biological Resources Division, Patuxent Wildlife Research Center, LaurelGoogle Scholar
  29. Igual JM, Tavecchia G, Jenouvrier S, Forero MG, Oro D (2009) Buying years to extinction: is compensatory mitigation for marine bycatch a sufficient conservation measure for long-lived seabirds? PLoS ONE 4:e4826PubMedCentralCrossRefPubMedGoogle Scholar
  30. Isenmann P, Moali A (2000) The birds of Algeria-Les oiseaux d’Algérie. Société d’Etudes Ornithologiques de France, Muséum national d'histoire naturelle, ParisGoogle Scholar
  31. Jenouvrier S, Tavecchia G, Thibault JC, Choquet R, Bretagnolle V (2008) Recruitment processes in long-lived species with delayed maturity: estimating key demographic parameters. Oikos 117:620–628CrossRefGoogle Scholar
  32. Jenouvrier S, Thibault JC, Viallefont A, Vidal P, Ristow D, Mougin JL, Brichetti P, Borg JJ, Bretagnolle V (2009) Global climate patterns explain range-wide synchronicity in survival of a migratory seabird. Glob Change Biol 15:268–279CrossRefGoogle Scholar
  33. Jiménez J, Sarzo B, Pérez I, Mínguez E, Martínez-Abraín A (2009) Conservación de aves marinas Mediterráneas. Plan de Acción para la Comunitat Valenciana. Consellería de Medio Ambiente, Agua, Urbanismo y Vivienda, Generalitat Valenciana, ValenciaGoogle Scholar
  34. Karris G, Fric J, Kitsou Z, Kalfopoulou J, Giokas S, Sfenthourakis S, Poirazidis K (2013) Does by-catch pose a threat for the conservation of seabird populations in the southern Ionian Sea (eastern Mediterranean)? A questionnaire-based survey of local fisheries. Medit Mar Sci 14:19–25CrossRefGoogle Scholar
  35. Laneri K, Louzao M, Martínez-Abraín A, Arcos JM, Belda EJ, Guallart J, Sánchez A, Giménez M, Maestre R, Oro D (2010) Trawling regime influences longline seabird by catch in the Mediterranean: new insights from a small-scale fishery. Mar Ecol Prog Ser 420:241–252CrossRefGoogle Scholar
  36. Lebreton JD (2005) Dynamical and statistical models for exploited populations. Aust NZ J Stat 47:49–63CrossRefGoogle Scholar
  37. Magnin G (1986) An assessment of illegal shooting and catching birds in Malta. International Council for Bird Conservation, CambridgeGoogle Scholar
  38. Mante A, Vidal P, Peyre O (2007) Observations naturalistes sur les Iles Habibas. Report for PIM Initiative, Aix-en-ProvenceGoogle Scholar
  39. Massa B (2006) Biological significance and conservation of biogeographical bird populations as shown by selected Mediterranean species. Avocetta 30:5–14Google Scholar
  40. Mendelsohn R, Emmanuel K, Chonabayashi S, Bakkensen L (2012) The impact of climate change on global tropical cyclone damage. Nat Clim Change 2:205–209CrossRefGoogle Scholar
  41. Moore JE, Curtis KA, Lewison RL, Dillingham PW, Cope JM, Fordham SV, Heppell SS, Pardo SA, Simfendorfer CA, Tuck GN, Zhou S (2013) Evaluating sustainability of fisheries bycatch mortality for marine megafauna: a review of conservation reference points for data-limited populations. Environ Conserv 40:329–344Google Scholar
  42. Mougin JL, Jouanin C, Roux F (2000) Démographie du puffin cendré Calonectris diomedea de Selvagem Grande (30 09′N, 15 52′W). Rev Ecol Terre Vie 55:275–290Google Scholar
  43. Navarrete J (2008) Migracion postnupcial de la Pardela Cenicienta Calonectris diomedea por las aguas costeras de Ceuta. Boletín GIAM 31:2–6Google Scholar
  44. Nichols JD, Hines JE, Sauer JR, Fallon FW, Fallon JE, Heglund PJ (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117:393–408CrossRefGoogle Scholar
  45. Niel C, Lebreton JD (2005) Using demographic invariants to detect over harvested bird populations from incomplete data. Conserv Biol 19:826–835CrossRefGoogle Scholar
  46. Oro D (2003a) Managing seabird metapopulations in the Mediterranean: constraints and challenges. Sci Mar 67:13–22CrossRefGoogle Scholar
  47. Oro D (2003b) IUCN criterions meet reality (or how to classify little known species?): the case of Balearic Shearwater. Ecol Medit 29:249–250Google Scholar
  48. Programa MIGRES (2009) Seguimiento de la migración de las aves en el Estrecho de Gibraltar: resulta dos del Programa Migres 2008. Migres Rev Ecol 1:83–101Google Scholar
  49. Raine AF, Temuge T (2009) 2008 illegal hunting report. BirdLife Malta, Ta’XbiexGoogle Scholar
  50. Raine H, Borg JJ, Raine AF, Bairner S, Borg Cardona M (2007) Light pollution and its effect on Yelkouan Shearwaters in Malta; causes and solutions. BirdLife Malta, MaltaGoogle Scholar
  51. Raine AF, Sultana J, Gillings S (2009) Malta breeding bird atlas 2008. BirdLife Malta, MaltaGoogle Scholar
  52. Ramos JA, Monteiro LR, Sola E, Moniz Z (1997) Characteristics and competition for nest cavities in burrowing Procellariiformes. Condor 99:634–641CrossRefGoogle Scholar
  53. Ramos R, Granadeiro JP, Nevoux M, Mougin JL, Dias MP, Catry P (2012) Combined spatio-temporal impacts of climate and longline fisheries on the survival of a trans-equatorial marine migrant. PLoS ONE 7:e40822PubMedCentralCrossRefPubMedGoogle Scholar
  54. Round PD, Swann RL (1977) Aspects of the breeding of Cory’s Shearwater Calonectris diomedea in Crete. Ibis 119:350–353CrossRefGoogle Scholar
  55. Ruffino L, Bourgeois K, Vidal E, Duhem C, Paracuellos M, Escribano F, Sposimo P, Baccetti N, Pascal M, Oro D (2009) Invasive rats and seabirds: a global review after 2,000 years of an unwanted coexistence on Mediterranean islands. Biol Invas 11:1631–1651CrossRefGoogle Scholar
  56. Sangster G, Collinson JM, Crochet PA, Knox AG, Parkin DT, Votier SC (2012) Taxonomic recommendations for British birds: eighth report. Ibis 154:874–883CrossRefGoogle Scholar
  57. Sultana J, Borg J (2006) Population ecology and conservation of the Cory’s Shearwater (Calonectris diomedea). In: Aransay N (ed) Proc 1st Symp on the Mediterranean Action Plan for the Conservation of Marine and Coastal birds. UNEP RAC/SPA, Tunis, pp 37–39Google Scholar
  58. Sultana J, Borg JJ, Gauci C, Falzon V (2011) The breeding birds of Malta. BirdLife Malta/BirdLife Publication, MaltaGoogle Scholar
  59. Taibi A, Ghermaoui M, Oubaziz B (2014) First study of the reproduction of Cory’s shearwater Calonectris diomedea (Procellariidae, Aves) at the Rachgoun Island (Beni Saf, Algeria). Adv Environ Biol 8:15–20Google Scholar
  60. Taylor BL, Wade PR, DeMaster DP, Barlow J (2000) Incorporating uncertainty into management models for marine mammals. Conserv Biol 14:1243–1252CrossRefGoogle Scholar
  61. Tenan S, Pradel R, Tavecchia G, Igual JM, Sanz-Aguilar A, Genovart M, Oro D (2014) Hierarchical modelling of population growth rate from individual capture–recapture data. Methods Ecol Evol 5:606–614CrossRefGoogle Scholar
  62. Thomas L, Laake JL, Rexstad E, Strindberg S, Marques FFC, Buckland ST, Borchers DL, Anderson DR, Burnham KP, Burt ML, Hedley SL, Pollard JH, Bishop JRB, Marques TA (2009) Distance 6.0. Release 2. Research Unit for Wildlife Population Assessment, University of St Andrews, St Andrews. Available at: http://www.ruwpa.st-and.ac.uk/distance/. Accessed 8 Dec 2010
  63. Tranchant Y, Vidal P (2006) Observations ornithologiques sur l’Archipel de la Galite. Report for PIM Initiative, Aix-en-ProvenceGoogle Scholar
  64. Wade PR (1998) Calculating limits to the allowable human-caused mortality of cetaceans and pinnipeds. Mar Mammal Sci 14:1–37CrossRefGoogle Scholar
  65. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San DiegoGoogle Scholar
  66. Zotier R, Thibault JC, Guyot I (1992) Known population and distribution of cormorants, shearwaters and storm petrels in the Mediterranean. Avocetta 16:118–126Google Scholar
  67. Zotier R, Bretagnolle V, Thibault JC (1999) Biogeography of the marine birds of a confined sea, the Mediterranean. J Biogeogr 26:297–313CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Pierre Defos du Rau
    • 1
  • Karen Bourgeois
    • 2
    • 3
    • 4
  • Mathieu Thévenet
    • 5
  • Lise Ruffino
    • 4
    • 6
  • Sylvain Dromzée
    • 3
  • Ridha Ouni
    • 7
  • Awatef Abiadh
    • 8
  • Roger Estève
    • 9
  • Jean-Patrick Durand
    • 10
  • Lorraine Anselme
    • 10
  • Gilles Faggio
    • 11
  • Jaber Mohamed Yahya
    • 12
  • Hamid Rguibi
    • 13
  • Michel Renda
    • 14
  • Bayrem Miladi
    • 7
  • Hennabaal Hamrouni
    • 15
  • Slim Alilech
    • 15
  • Aymen Nefla
    • 7
  • Wahbi Jaouadi
    • 16
  • Sofiene Agrebi
    • 16
  • Sébastien Renou
    • 5
  1. 1.CNERA—avifaune migratriceOffice National de la Chasse et de la Faune Sauvage (ONCFS)ArlesFrance
  2. 2.School of Biological SciencesAuckland UniversityAucklandNew Zealand
  3. 3.A dos d’îles–Association for the study and conservation of insular biodiversityLançon de ProvenceFrance
  4. 4.Europôle Méditerranéen de l’Arbois, Institut Méditerranéen de Biodiversité et d’Écologie marine et continentale (IMBE), UMR CNRS-IRD-UAPVAix-Marseille UniversitéAix en Provence Cedex 04France
  5. 5.Conservatoire du LittoralPIM–Initiative pour les petites îles de MéditerranéeAix en ProvenceFrance
  6. 6.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland
  7. 7.Ridha Ouni ConsultantTunisTunisia
  8. 8.Ligue pour la Protection des Oiseaux/BirdLife en FranceRochefort CedexFrance
  9. 9.Conservatoire du LittoralAix-en-ProvenceFrance
  10. 10.Conservatoire d’Espaces Naturels de Provence-Alpes-Côte d’AzurMarseilleFrance
  11. 11.Conservatoire d’Espaces Naturels de CorseLieu dit RevincoFrance
  12. 12.Environment General AuthorityTripoliLibya
  13. 13.Laboratoire Valorisation des Ressouces Naturelles et Biodiversité, Département de Biologie, Faculté des SciencesUniversité Chouaib DoukkaliEl JadidaMorocco
  14. 14.Spéléo Club de Bézier (SCBAM)BéziersFrance
  15. 15.Association les Amis des Oiseaux (AAO)ArianaTunisia
  16. 16.Agence pour la Protection et l’Aménagement du Littoral (APAL)TunisTunisia

Personalised recommendations