Journal of Ornithology

, Volume 156, Supplement 1, pp 355–365 | Cite as

Evolutionary history of passerine birds (Aves: Passeriformes) from the Qinghai–Tibetan plateau: from a pre-Quarternary perspective to an integrative biodiversity assessment

  • Martin Päckert
  • Jochen Martens
  • Yue-Hua Sun
  • Dieter Thomas Tietze


As one of the most prominent topographical features on Earth, the Qinghai–Tibetan plateau (QTP) underwent a long and complex history of the QTP uplift from the collision of the Indian and the Eurasian plates to the present. At its southern and southeastern margins, it is flanked by the most significant hotspots of organismic diversity of the northern hemisphere (including birds), the Sino-Himalayan mountain forests. In contrast, the central plateau region itself harbours species-poor communities but also a good number of endemics that presumably evolved from rather ancient (pre-Pleistocene) phylogenetic lineage splits. We discuss the evolutionary history of QTP passerines from a twofold perspective including examples from our own research. First, we provide an overview of those alpine QTP endemics that represent late Miocene and Pliocene lineage splits, i.e. early colonisations to the central alpine QTP region. As an example, true rosefinches (genus Carpodacus) presumably evolved from a forested eastern QTP centre of origin and colonised the (semi-)open plateau habitats several times independently. Second, we discuss younger speciation events corresponding to phylogeographic east–west divides along the southern QTP margin. A multidisciplinary approach combining genetic, bioacoustic and morphological markers shed new light on the phylogenetic relationships of Pnoepyga wren babblers and on the intraspecific subdivision of the Buff-barred Warbler (Phylloscopus pulcher).


Qinghai–Tibetan plateau Passeriformes Sino-Himalayas Alpine habitats Carpodacus 



The results of our own studies presented here were based on the rich material and field observations from a multitude of nearly annual expeditions of J.M. to various parts of Asia from the year 1969 until today. We would like to thank the numerous colleagues and helpers in various countries from whom we got invaluable support in many respects. During the years, J.M. received several grants from Deutsche Ornithologen-Gesellschaft (DO-G), Gesellschaft für Tropenornithologie (GTO) and from Feldbausch-Stiftung and Wagner-Stiftung, both at Fachbereich Biologie, Johannes Gutenberg-Universität Mainz, Germany. Our current studies on QTP passerine evolution as well as travel funds for participation in the Sino-Himalaya symposium at the IOC in Tokyo 2014 were granted by Deutsche Forschungsgemeinschaft, PA 1818/3-1 (MP). Y.-H.S. received research grants from the National Natural Science Foundation of China, project No. 31272286. D.T.T. was funded by the Deutsche Forschungsgemeinschaft (Ti 679/1-1, Ti 679/2-1) and received travel grants for the IOC in Tokyo by the German Academic Exchange Service (DAAD). We would like to thank all colleagues who contributed to this symposium and to those who participated in the successive fruitful discussions—you all made this meeting a big success.


  1. Alström P, Davidson P, Duckworth JW, Eames JC, Le TT, Nguyen C, Olsson U, Robson C, Timmins R (2010) Description of a new species of Phylloscopus warbler from Vietnam and Laos. Ibis 152:145–168CrossRefGoogle Scholar
  2. Alström P, Barnes KN, Olsson U, Barker FK, Bloomer P, Khan AA, Qureshi MA, Guillaumet A, Crochet P-A, Ryan PG (2013a) Multilocus phylogeny of the avian family Alaudidae (larks) reveals complex morphological evolution, non-monophyletic genera and hidden species diversity. Mol Phylogenet Evol 69:1043–1056PubMedCrossRefGoogle Scholar
  3. Alström P, Olsson U, Lei FM (2013b) A review of the recent advances in the systematics of the avian superfamily Sylvioidea. Chin Birds 4:99–131CrossRefGoogle Scholar
  4. Clement P (1999) Finches and sparrows. Princeton University Press, PrincetonGoogle Scholar
  5. Collar NJ, Andreev AV, Chan S, Crosby MJ, Subramanya S, Tobias JA (2001) Threatened birds of Asia: the birdlife international red data book. BirdLife International, CambridgeGoogle Scholar
  6. Dai C, Zhao N, Wang W, Lin C, Gao B, Yang X, Zhang Z, Lei F (2011) Profound climatic effects on two Asian black-throated tits (Aves: Aegithalidae) revealed by ecological niche models and phylogeographic analysis. PLoS ONE 6:329329Google Scholar
  7. del Hoyo J, Elliott A, Christie D (2010) Handbook of the birds of the world. In: Weavers to new world warblers, vol 15, Lynx, Barcelona, pp. 440–617Google Scholar
  8. Deng T, Wang X, Fortelius M, Li Q, Wang Y, Tseng ZJ, Takeuchi GT, Aylor JE, Säilä LK, Xie G (2011) Out of Tibet: Pliocene woolly rhino suggests high-plateau origin of ice age megaherbivores. Science 333:1285–1288PubMedCrossRefGoogle Scholar
  9. Drovetski SV, Rakovic M, Semenov G, Fadeev IV, Red’kin YA (2014) Limited phylogeographic signal in sex-linked and autosomal loci despite geographically, ecologically and phenotypically concordant structure of mtDNA variation in the Holarctic avian genus Eremophila. PLoS ONE 9:e87570PubMedPubMedCentralCrossRefGoogle Scholar
  10. Favre A, Päckert M, Pauls S, Jähnig S, Uhl D, Michalak I, Muellner-Riehl A (2014) The role of the uplift of the Qinghai–Tibetan plateau for the evolution of Tibetan biotas. Biol Rev. doi: 10.1111/brv.12107 PubMedGoogle Scholar
  11. Gelang M, Cibois A, Pasquet E, Olsson U, Alström P, Ericson PGP (2009) Phylogeny of babblers (Aves, Passeriformes): major lineages, family limits and classification. Zool Scr 38:225–236CrossRefGoogle Scholar
  12. Groth JG (2000) Molecular evidence for the systematic position of Urocynchramus pylzowi. Auk 117:787–791CrossRefGoogle Scholar
  13. James HF, Ericson PGP, Slikas B, Lei F, Gill FB, Olson SL (2003) Pseudopodoces humilis, a misclassified terrestrial tit (Paridae) of the Tibetan plateau: evolutionary consequences of shifting adaptive zones. Ibis 145:185–202CrossRefGoogle Scholar
  14. Johansson US, Ekman J, Bowie RCK, Halvarsson P, Ohlson JI, Price TD, Ericson PGP (2013) A complete multilocus species phylogeny of the tits and chickadees (Aves: Paridae). Mol Phylogenet Evol 69:852–860PubMedCrossRefGoogle Scholar
  15. Kennedy JD, Weir JT, Hooper DM, Tietze DT, Martens J, Price TD (2012) Ecological limits on diversification of the Himalayan core Corvoidea. Evolution 66:2599–2613PubMedCrossRefGoogle Scholar
  16. Lei F, Zhao H, Yin Z (2006) Distribution pattern of endangered bird species in China. Integr Zool 1:162–169PubMedCrossRefGoogle Scholar
  17. Lei F, Qu Y, Song G (2014) Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet plateau and Quarternary glaciations. Curr Zool 60:149–161Google Scholar
  18. Lu X, Gong G, Ma X (2011) Niche segregation between two alpine rosefinches: to coexist in extreme environments. Evol Biol 38:79–87CrossRefGoogle Scholar
  19. Maddison WP, Maddison DR (2008) Mesquite: a modular system for evolutionary analysis, version 2.5. Accessed 6 Nov 2014
  20. Martens J (2010) Systematic notes on Asian birds: 72. A preliminary review of the leaf warbler genera Phylloscopus and Seicercus. Br Ornithol Club Occas Publ 5:41–116Google Scholar
  21. Martens J, Eck S (1995) Towards an ornithology of the Himalayas: systematics, ecology and vocalizations of Nepal birds. Bonn Zool Monogr 38:1–445Google Scholar
  22. Martens J, Geduldig G (1990) Acoustic adaptations of birds living close to Himalayan torrents. In: Proceedings of the international 100th DO-G meeting: current topics avian biol. bonn (1988), pp 123–131Google Scholar
  23. Martens J, Tietze DT, Päckert M (2011) Phylogeny, biodiversity, and species limits of passerine birds in the Sino-Himalayan region—a critical review. Orn Monogr 70:64–94CrossRefGoogle Scholar
  24. Mulch A, Chamberlain CP (2006) The rise and growth of Tibet. Nature 439:670–671PubMedCrossRefGoogle Scholar
  25. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  26. Nylander JAA, Olsson U, Alström P, Sanmartín I (2008) Accounting for phylogenetic uncertainty in biogeography: a Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Syst Biol 257:257–268CrossRefGoogle Scholar
  27. Päckert M, Martens J, Nazarenko AA, Kosuch J, Veith M (2003) Phylogenetic signal in the song of crests and kinglets (Aves: Regulus). Evolution 57:616–629PubMedCrossRefGoogle Scholar
  28. Päckert M, Martens J, Severinghaus LL (2009) The Taiwan Firecrest (Regulus goodfellowi) belongs to the Goldcrest assemblage (Regulus regulus s. l.)—evidence from mitochondrial DNA and territorial song of the Regulidae. J Ornithol 150:205–220CrossRefGoogle Scholar
  29. Päckert M, Martens J, Sun Y-H (2010) Phylogeny of long-tailed tits and allies inferred from mitochondrial and nuclear markers (Aves: Passeriformes, Aegithalidae). Mol Phylogenet Evol 55:952–967PubMedCrossRefGoogle Scholar
  30. Päckert M, Martens J, Sun Y-H, Severinghaus LL, Nazarenko AA, Ting J, Töpfer T, Tietze DT (2012) Horizontal and elevational phylogeographic patterns of Himalayan and Southeast Asian forest passerines (Aves: Passeriformes). J Biogeogr 39:556–573CrossRefGoogle Scholar
  31. Päckert M, Martens J, Wei L, Hsu YC, Sun Y-H (2013) Molecular genetic and bioacoustic differentiation of Pnoepyga wren babblers. J Ornithol 154:329–337CrossRefGoogle Scholar
  32. Päckert M, Sun Y-H, Fischer B, Tietze DT, Martens J (2014) A phylogeographic break and bioacoustic intraspecific differentiation in the Buff-barred Warbler (Phylloscopus pulcher) (Aves: Passeriformes, Phylloscopidae). Avian Res 5:2CrossRefGoogle Scholar
  33. Padial JM, Miralles A, de la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:16PubMedPubMedCentralCrossRefGoogle Scholar
  34. Price T (2010) The roles of time and ecology in the continental radiation of the old world leaf warblers (Phylloscopus and Seicercus). Philos Trans R Soc Lond B 365:1749–1762CrossRefGoogle Scholar
  35. Price TD, Zee J, Jamdar K, Jamdar N (2003) Bird species diversity along the Himalaya: a comparison of Himachal Pradesh with Kashmir. J Bombay Nat Hist Soc 100:394–409Google Scholar
  36. Price TD, Mohan D, Tietze DT, Hooper DM, Orme CD, Rasmussen PC (2011) Determinants of northerly range limits along the Himalayan bird diversity gradient. Am Nat 178:S97–S108PubMedCrossRefGoogle Scholar
  37. Price TD, Hooper DM, Buchana CD, Johansson US, Tietze DT, Alström P, Olsoon U, Gosh-Harihar M, Ishtiaq F, Gupta SK, Martens J, Harr B, Singh P, Mohan D (2014) Niche filling slows the diversification of Himalayan songbirds. Nature 509:222–225PubMedCrossRefGoogle Scholar
  38. Qu Y, Lei F (2009) Comparative phylogeography of two endemic birds from the Tibetan plateau, the white-rumped snow finch (Onychostruthus taczanowskii) and the Hume’s ground tit (Pseudopodoces humilis). Mol Phylogenet Evol 51:312–326PubMedCrossRefGoogle Scholar
  39. Qu Y, Ericson PGP, Lei F, Gebauer A, Kaiser M, Helbig AJ (2006) Molecular phylogenetic relationship of snow finch complex (genera Montifringilla, Pyrgilauda, and Onychostruthus) from the Tibetan plateau. Mol Phylogenet Evol 40:218–226PubMedCrossRefGoogle Scholar
  40. Qu J, Liu N, Bao X, Wang X (2009) Phylogeography of the ring-necked pheasant (Phasianus colchicus) in China. Mol Phylogenet Evol 52:125–132PubMedCrossRefGoogle Scholar
  41. Qu Y, Lei F, Zhang R, Lu X (2010) Comparative phylogeography of five avian species: implications for Pleistocene evolutionary history in the Qinghai–Tibetan plateau. Mol Ecol 19:338–351PubMedCrossRefGoogle Scholar
  42. Qu Y, Zhao H, Han N, Zhou G, Song G, Gao B, Tian S, Zhang J, Zhang R, Meng X, Zhang Y, Zhang Y, Zhu X, Wang W, Lambert D, Ericson PGP, Subramanian S, Yeung C, Zhu H, Jiang Z, Li R, Lei F (2013) Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat Commun 4:2071PubMedGoogle Scholar
  43. Roselaar CS, Sluys R, Aliabadian M, Mekenkamp PGM (2007) Geographic patterns in the distribution of Palearctic songbirds. J Ornithol 148:271–280CrossRefGoogle Scholar
  44. Schlick-Steiner BC, Steiner FM, Seifert B, Stauffer C, Christian E, Crozier RH (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annu Rev Entomol 55:421–438PubMedCrossRefGoogle Scholar
  45. Schmidt J, Opgenoorth L, Höll S, Bastrop R (2012) Into the Himalayan exile: the phylogeography of the ground beetle Erithra clade supports the Tibetan origin of forest-dwelling Himalayan species groups. PLoS ONE 7:e45482PubMedPubMedCentralCrossRefGoogle Scholar
  46. Song G, Qu Y, Yin Z, Li S, Liu N, Lei F (2009) Phylogeography of the Alcippe morrisonia (Aves: Timaliidae): long populations history beyond late Pleistocene glaciations. BMC Evol Biol 9:43CrossRefGoogle Scholar
  47. Tietze DT, Borthakur U (2012) Historical biogeography of tits (Aves: Paridae, Remizidae). Org Divers Evol 12:433–444CrossRefGoogle Scholar
  48. Tietze DT, Martens J, Sun Y-H (2006) Molecular phylogeny of treecreepers (Certhia) detects hidden diversity. Ibis 148:477–488CrossRefGoogle Scholar
  49. Tietze DT, Martens J, Sun Y-H, Päckert M (2008) Evolutionary history of treecreeper vocalisations (Aves: Certhia). Org Divers Evol 8:305–324CrossRefGoogle Scholar
  50. Tietze DT, Päckert M, Martens J, Lehmann H, Sun Y-H (2013) Complete phylogeny and historical biogeography of true rosefinches (Aves: Carpodacus). Zool J Linn Soc 169:215–234CrossRefGoogle Scholar
  51. Tseng ZJ, Wang X, Slater GJ, Takeuchi GT, Li Q, Liu J, Xie G (2013) Himalayan fossils of the oldest known pantherine establish ancient origin of big cats. Proc R Soc Lond B 281:20132686CrossRefGoogle Scholar
  52. Vaurie C (1972) Tibet and its birds. Witherby, LondonGoogle Scholar
  53. Wang X, Tseng ZJ, Li Q, Takeuchi GT, Xie G (2014) From ‘third pole’ to north pole: a Himalayan origin for the arctic fox. Proc R Soc Lond B 281:20140893CrossRefGoogle Scholar
  54. Weigold H (2005) Die biogeographie Tibets und seiner vorländer. Verein Sächsischer Ornithologen, Hohenstein-ErnstthalGoogle Scholar
  55. Wikramanayake E, Dinerstein E, Loucks CJ, Primm S (2001) Terrestrial ecoregions of the Indo-Pacific: a conservation assessment (world wildlife fund ecoregion assessments). Island Press, Washington D.C.Google Scholar
  56. Wu Z, Barosh PJ, Zhonghai W, Daogong H, Xun Z, Peisheng Y (2007) Vast early Miocene lakes of the central Tibetan plateau. Bull Geol Soc Am 120:1326–1327Google Scholar
  57. Yang S, Lei F, Yin ZH (2006) Molecular phylogeny of rosefinches and rose bunting (Passeriformes, Fringillidae, Urocynchramidae). Acta Zootax Sin 31:453–458Google Scholar
  58. Yang S, Dong H, Lei F (2009) Phylogeography of the regional fauna on the Tibetan plateau: a review. Progr Nat Sci 19:789–799CrossRefGoogle Scholar
  59. Yang Y, Yang X, Tang Z (2013) Pattern of species diversity and phylogenetic structure of vascular plants on the Qinghai–Tibetan plateau. Ecol Evol 3:4584–4595PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zhao N, Dai C, Wanr W, Zhang R, Qu Y, Song G, Chen K, Yang X, Zou F, Lei F (2012) Pleistocene climate changes shaped the divergence and demography of Asian populations of the great tit Parus major: evidence from phylogeographic analysis and ecological niche models. J Avian Biol 43:297–310CrossRefGoogle Scholar
  61. Zuccon D, Prŷs-Jones R, Rasmussen P, Ericson P (2012) The phylogenetic relationships and generic limits of finches (Fringillidae). Mol Phylogenet Evol 62:581–596PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Martin Päckert
    • 1
  • Jochen Martens
    • 2
  • Yue-Hua Sun
    • 3
  • Dieter Thomas Tietze
    • 4
  1. 1.Senckenberg Natural History CollectionsMuseum of ZoologyDresdenGermany
  2. 2.Institut für ZoologieJohannes Gutenberg-UniversitätMainzGermany
  3. 3.Key Laboratory of Animal Ecology and Conservation, Institute of ZoologyChinese Academy of ScienceBeijingChina
  4. 4.Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityHeidelbergGermany

Personalised recommendations