Advertisement

Journal of Ornithology

, Volume 156, Issue 3, pp 657–665 | Cite as

Migration distance and breeding latitude correlate with the scheduling of pre-alternate body moult: a comparison among migratory waders

  • Pedro M. LourençoEmail author
  • Theunis Piersma
Original Article

Abstract

Moult is an important maintenance activity that should be carefully timed within the annual cycle. Many birds perform a pre-alternate moult of body feathers some time prior to the breeding season. In migrants, the timing of the pre-alternate moult coincides with the migration from wintering to breeding areas. In this study, we used visual plumage scores collected on the Continental Black-tailed Godwit Limosa limosa limosa in Portugal and The Netherlands to establish that the pre-alternate body moult of these birds during the northward migration between West Africa and The Netherlands takes place only in staging areas in the Iberian peninsula from late January to late February. A comparison of the moult strategy of these godwits with that of 20 other migratory wader populations (13 species) revealed that the former had a rather uncommon moult schedule which was more characteristic of populations with rather short migrations that breed at lower latitudes. We argue that this unusual moult schedule can be explained by a combination of ecological opportunity and proximate and ultimate trade-offs (hormonal incompatibly and maximization of plumage quality vs. time spent on migration, respectively).

Keywords

Breeding plumage Limosa limosa Migration Pre-alternate moult Staging period Trade-off 

Zusammenfassung

Zugstrecke und geographische Breite des Brutgebiets korrelieren mit dem Zeitpunkt der Pränuptialmauser. Ein Vergleich zwischen ziehenden Limikolen Die Mauser ist eine wichtige Maßnahme zur Erhaltung der Gefieders, die sorgfältig in den Jahreslauf eines Vogels eingepasst sein muss. Viele Vögel durchlaufen einen Wechsel der Körperfedern in einer Pränuptialmauser vor Beginn der Brutsaison. Bei Zugvögeln fällt das in die Zeit des Zugs vom Überwinterungs- ins Brutgebiet. Mithilfe eines visuellen Score für den Mauserzustand, aufgenommen in Portugal und in den Niederlanden, stellen wir zuerst fest, dass die Pränuptialmauser bei der Uferschnepfe (Limosalimosalimosa) während des Nordzugs zwischen Westafrika und den Niederlanden ausschließlich an Rastplätzen auf der Iberischen Halbinsel vom späten Januar bis in den späten Februar hinein stattfindet. In einem Vergleich mit 20 anderen Populationen ziehender Limikolen von 13 Arten fanden wir, dass das von den Uferschnepfen gezeigte Muster des Mauserzeitpunkts tatsächlich ungewöhnlich ist und charakteristisch für Populationen mit eher kurzen Zugstrecken, die in geringeren geographischen Breiten brüten. Wir argumentieren, dass dies erklärt werden kann mit einer Kombination aus ökologischer Opportunität und proximaten und ultimaten trade-offs (hormonelle Inkompatibilität und Maximierung der Gefiederqualität gegenüber der auf den Zug verwendeten Zeit).

Notes

Acknowledgments

We would like to thank all the landowners, both in Portugal and in Friesland, and also It FryskeGea and Staatsbosbeheer for allowing us access to their fields. Phil Battley, Peter Pyle, Gregor Scheiffarth and two anonymous reviewers provided many useful comments on the manuscript. PML was funded by the Portuguese ‘Fundação para a Ciência e Tecnologia’ through grants SFRH/BD/21,528/2005 and SFRH/BPD/84,237/2012. TP is supported by BirdLife Netherlands and the Netherlands’ chapter of the World Wide Fund for Nature through the Chair in Global Flyway Ecology.

References

  1. Alves JA, Lourenço PM (2013) Estimating flight ranges to unravel migratory strategies: spring migration of continental black-tailed godwits (Limosa limosa limosa). Bird Conserv Int 24:214–222CrossRefGoogle Scholar
  2. Baker AJ, González PM, Piersma T, Minton CDT, Wilson JR, Sitters H, Graham D, Jessop R, Collins P, de Goeij P, Peck MK, Lini R, Bala L, Pagnoni G, Vila A, Bremer E, Bastida R, Ieno E, Blanco D, de Lima S, do Nascimento I, Scherer SS, Schneider MP, Silva A, Rodrigues AAF (1998) Northbound migration of red knots Calidris canutusrufa in Argentina and Brazil: report on results obtained by an international expedition in March–April 1997. Wader Study Group Bull 88:64–75Google Scholar
  3. Barta Z, McNamara JM, Houston AI, Weber TP, Hedenström A, Feró O (2008) Optimal moult strategies in migratory birds. Phil Trans R Soc B 363:211–229PubMedCentralPubMedCrossRefGoogle Scholar
  4. Battley PF, Piersma T (1997) The body composition of lesser knots Calidris canutus rogersi preparing to take off on migration from northern New Zealand. Notornis 44:137–150Google Scholar
  5. Battley PF, Piersma T (2005) Body composition and flight ranges of bar-tailed godwits (Limosa lapponica baueri) from New Zealand. Auk 122:922–937CrossRefGoogle Scholar
  6. Battley PF, Rogers DI, van Gils JA, Piersma T, Hassell CJ, Boyle A, Yang HY (2005) How do red knots Calidris canutus leave northwest Australia in May and reach the breeding grounds in June? Predictions of stopover times, fuelling rates and prey quality in the Yellow Sea. J Avian Biol 36:494–500CrossRefGoogle Scholar
  7. Battley PF, Rogers DI, Hassell CJ (2006) Prebreeding moult, plumage and evidence for a presupplemental moult in the great knot Calidris tenuirostris. Ibis 148:27–38CrossRefGoogle Scholar
  8. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83PubMedCrossRefGoogle Scholar
  9. Buehler DM, Piersma T (2008) Travelling on a budget: predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Phil Trans R Soc B 363:247–266PubMedCentralPubMedCrossRefGoogle Scholar
  10. Conklin JR, Battley PF (2011) Contour-feather moult of bar-tailed godwits (Limosa lapponica baueri) in New Zealand and the northern hemisphere reveals multiple strategies by sex and breeding region. Emu 111:330–340CrossRefGoogle Scholar
  11. Conklin JR, Battley PF (2012) Carry-over effects and compensation: late arrival on non-breeding grounds affects wing moult but not plumage or schedules of departing bar-tailed godwits Limosa lapponica baueri. J Avian Biol 43:252–263CrossRefGoogle Scholar
  12. Dawson A (2006) Control of molt in birds: association with prolactin and gonadal regression. Gen Comp Endocrinol 147:314–322PubMedCrossRefGoogle Scholar
  13. Dawson A, Hinsley SA, Ferns PN, Bonser RHC, Eccleston L (2000) Rate of moult affects feather quality: a mechanism linking current reproductive effort to future survival. Proc R Soc B 267:2093–2098PubMedCentralPubMedCrossRefGoogle Scholar
  14. Delany S, Dodman T, Stroud D, Scott D (2009) An atlas of wader population in Africa and western Eurasia. Wetlands International, WageningenGoogle Scholar
  15. Desrochers DW, Reed JM, Awerman J, Kluge JA, Wilkinson J, van Griethuijsen LI, Aman J, Romero LM (2009) Exogenous and endogenous corticosterone alter feather quality. Comp Biochem Phys A 152:46–52CrossRefGoogle Scholar
  16. Dietz MW, Rogers KG, Piersma T (2013) When the seasons don’t fit: speedy moult as a routine carry-over cost of reproduction. PLoS One 8:e53890. doi: 10.1371/journal.pone.0053890 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Drent RH, Fox AD, Stahl J (2006) Travelling to breed. J Ornithol 147:122–134CrossRefGoogle Scholar
  18. Fedrizzi CE, AzevedoJúnior SM, Larrazábal MEL (2004) Body mass and acquisition of breeding plumage of wintering Calidris pusilla (Linnaeus) (Aves, Scolopacidae) in the coast of Pernambuco, north-eastern Brazil. Rev Bras Zool 21:249–252CrossRefGoogle Scholar
  19. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  20. Gunnarsson TG, Gill JA, Newton J, Potts PM, Sutherland WJ (2005) Seasonal matching of habitat quality and fitness in a migratory bird. Proc R Soc Lond B 272:2319–2323CrossRefGoogle Scholar
  21. Hill GE, McGraw KJ (2006) Bird coloration, function and evolution, vol 2. Harvard University Press, CambridgeGoogle Scholar
  22. Holmgren N, Hedenström A (1995) The scheduling of molt in migratory birds. Evol Ecol 9:354–368CrossRefGoogle Scholar
  23. Hooijmeijer JCEW, Senner NR, Tibbitts TL, Gill RE Jr, Douglas DC, Bruinzeel LW, Wymenga E, Piersma T (2013) Post-breeding migration of Dutch-breeding black-tailed godwits: timing, routes, use of stopovers, and nonbreeding distributions. Ardea 101:141–152CrossRefGoogle Scholar
  24. Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic Press, LondonGoogle Scholar
  25. Jukema J, Piersma T (2000) Contour feather moult of ruffs Philomachus pugnax during northward migration, with notes on homology of nuptial plumages in scolopacid waders. Ibis 142:289–296CrossRefGoogle Scholar
  26. Klaassen M (1995) Moult and basal metabolic costs in males of two subspecies of stonechats: the European Saxicola torquata rubicula and the East African S. t. axillaris. Oecologia 104:424–432CrossRefGoogle Scholar
  27. Klaassen M (2003) Relationships between migration and breeding strategy in Arctic breeding birds. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avianmigration. Springer, Heidelberg, pp 237–249Google Scholar
  28. Lindström Å, Visser GH, Daan S (1993) The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol Zool 64:490–510Google Scholar
  29. Lõhmus M, Sundström LF, Moore FR (2006) Non-invasive corticosterone treatment changes foraging intensity in red-eyed vireos Vireo olivaceus. J Avian Biol 37:523–526CrossRefGoogle Scholar
  30. Lourenço PM, Kentie R, Schroeder J, Alves JA, Groen NM, Hooijmeijer JCEW, Piersma T (2010a) Phenology, stopover dynamics and population size of migrating black-tailed godwits Limosa limosa limosa in Portuguese rice plantations. Ardea 98:35–42CrossRefGoogle Scholar
  31. Lourenço PM, Mandema F, Hooijmeijer JCEW, Granadeiro JP, Piersma T (2010b) Site selection and resource depletion in black-tailed godwits Limosa l. limosa eating rice during northward migration. J Anim Ecol 79:522–528PubMedCrossRefGoogle Scholar
  32. Lourenço PM, Kentie R, Schroeder J, Groen N, Hooijmeijer JCEW, Piersma T (2011) Repeatable timing of northward departure, arrival and breeding in black-tailed godwits Limosa l. limosa, but no domino effects. J Ornithol 152:1023–1032CrossRefGoogle Scholar
  33. Martin K, Wiebe KL (2004) Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr Comp Biol 44:177–185PubMedCrossRefGoogle Scholar
  34. Morbey YE, Ydenberg RC (2001) Protandrous arrival timing to breeding areas: a review. Ecol Lett 4:663–673CrossRefGoogle Scholar
  35. Murphy ME (1996) Energetics and nutrition in molt. In: Carey C (ed) Avian energetics and nutritional ecology. Chapman and Hall, New York, pp 158–198CrossRefGoogle Scholar
  36. Orme D (2012) The caper package: comparative analysis of philogenetics and evolution in R. The Comprehensive R Archive Network. Available at: http://cran.rproject.org/web/packages/caper/vignettes/caper.pdf. Accessed 21 Oct 2013
  37. Piersma T (2007) Using the power of comparison to explain habitat use and migration strategies of shorebirds worldwide. J Ornithol 148[Suppl 1]:45–59CrossRefGoogle Scholar
  38. Piersma T, Jukema J (1993) Red breasts as honest signals of migratory quality in a long-distance migrant, the bar-tailed godwit. Condor 95:163–177CrossRefGoogle Scholar
  39. Piersma T, Reneerkens J, Ramenofsky M (2000) Baseline corticosterone peaks in shorebirds with maximal energy stores for migration: a general preparatory mechanism for rapid behavioral and metabolic transitions? Gen Comp Endocrinol 120:118–126PubMedCrossRefGoogle Scholar
  40. Sánchez-Guzmán JM, Moreno R, Masero JA, Corbacho C, Costillo E, Villegas A, Santiago-Quesada F (2007) Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: the importance of the rice fields in Extremadura, Spain. Biodivers Conserv 16:3333–3344CrossRefGoogle Scholar
  41. Scheiffarth G, Wahls S, Ketzenberg C, Exo KM (2002) Spring migration strategies of two populations of bar-tailed godwits, Limosa lapponica, in the Wadden Sea: time minimizers or energy minimizers? Oikos 96:346–354CrossRefGoogle Scholar
  42. Schekkerman H, Tulp I, Piersma T, Visser GH (2003) Mechanisms promoting higher growth rate in arctic than in temperate shorebirds. Oecologia 134:332–342PubMedCrossRefGoogle Scholar
  43. Schroeder J, Lourenço PM, van der Velde M, Hooijmeijer JCEW, Both C, Piersma T (2008) Sexual dimorphism in plumage and size in black-tailed godwits Limosa limosa limosa. Ardea 96:25–37CrossRefGoogle Scholar
  44. Schroeder J, Lourenço PM, Hooijmeijer JCEW, Both C, Piersma T (2009) A possible case of contemporary selection leading to a decrease in sexual plumage dimorphism in a grassland-breeding shorebird. Behav Ecol 20:797–807CrossRefGoogle Scholar
  45. Serra L (2001) Duration of primary moult affects primary quality in grey plovers Pluvialis squatarola. J Avian Biol 32:377–380CrossRefGoogle Scholar
  46. Serra L, Whitelaw DA, Tree AJ, Underhill LG (1999) Moult, mass and migration of grey plovers Pluvialis squatarola wintering in South Africa. Ardea 87:71–81Google Scholar
  47. Serra L, Griggio M, Licheri D, Pilastro A (2007) Moult speed constrains the expression of a carotenoid-based sexual ornament. J EvolBiol 20:2028–2034Google Scholar
  48. Smith RJ, Moore FR (2005) Arrival timing and seasonal reproductive performance in a long-distance migratory land bird. Behav Ecol Sociobiol 57:231–239CrossRefGoogle Scholar
  49. Swaddle JP, Witter MS, Cuthill IC, Budden A, McCowen P (1996) Plumage condition affects flight performance in common starlings: implications for developmental homeostasis, abrasion and moult. J Avian Biol 27:103–111CrossRefGoogle Scholar
  50. Thomas GH, Wills MA, Székely T (2004) A supertree approach to shorebird phylogeny. BMC Evol Biol 4:28. doi: 10.1186/1471-2148-4-28 PubMedCentralPubMedCrossRefGoogle Scholar
  51. van de Kam J, Ens B, Piersma T, Zwarts L (2004) Shorebirds: An illustrated behavioural ecology. KNNV Publishers, UtrechtGoogle Scholar
  52. Vézina F, Gustowska A, Jalvingh KM, Chastel O, Piersma T (2009) Hormonal correlates and thermoregulatory consequences of molting on metabolic rate in a northerly wintering shorebird. Physiol Biochem Zool 82:129–142PubMedCrossRefGoogle Scholar
  53. Williams TD (2012) Physiological adaptations for breeding in birds. Princeton University Press, PrincetonGoogle Scholar
  54. Zwarts L, Ens BJ, Kersten M, Piersma T (1990) Moult, mass and flight range of waders ready to fly off for long-distance migrations. Ardea 78:339–364Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  1. 1.Centro de Estudos do Ambiente e do Mar (CESAM)/Museu Nacional de História Natural e da CiênciaUniversidade de LisboaLisbonPortugal
  2. 2.Animal Ecology Group, Centre for Ecological and Evolutionary StudiesUniversity of GroningenGroningenThe Netherlands
  3. 3.Department of Marine EcologyNIOZ Royal Netherlands Institute for Sea ResearchDen Burg, TexelThe Netherlands

Personalised recommendations