Journal of Ornithology

, Volume 156, Issue 3, pp 783–793 | Cite as

Age-related change in carotenoid-based plumage of the American Redstart (Setophaga ruticilla)

  • Kristen L. D. Marini
  • Ann E. McKellar
  • Laurene M. Ratcliffe
  • Peter P. Marra
  • Matthew W. Reudink
Original Article

Abstract

Plumage colouration serves a variety of functions for birds, including conspecific signalling, crypsis, and predator–prey interactions. Though much research has been conducted on colour changes in species with delayed plumage maturation, where birds do not exhibit definitive adult plumage until their second breeding season or later, relatively few studies have examined how plumage colour changes once definitive adult plumage has been attained. In this study on male and female American Redstarts (Setophaga ruticilla), which exhibit male delayed plumage maturation, we used reflectance spectrometry to evaluate carotenoid-based tail colour changes over 11 breeding seasons, examining both within-individual and population-level changes. At a population level, males in their first breeding season in definitive adult plumage had a feather hue that was more orange-shifted than birds in their second year in adult plumage, and marginally, but not significantly, more orange-shifted than birds in their third year in adult plumage. Within-individual analysis of males recaptured in subsequent seasons also revealed a shift away from orange towards a more yellow feather hue as individuals aged. Within individuals, red chroma was highest for males in their second year in adult plumage, but it showed no population-level effects. At the population level, female redstarts in their first breeding season displayed plumage with a higher red chroma and a lower brightness than birds in their second breeding season, potentially as a result of differences in the timing and conditions of moult (first-year bird tail feathers were grown in the nest). For adult males and females, there was no difference in plumage colouration between birds that returned to the study site compared to those that failed to return. Together, our results suggest that within-individual change rather than differential survival best explains our findings. We suggest that studies examining age-related colour changes are critical for understanding the evolution of complex signalling systems, such as that of American Redstarts.

Keywords

American Redstart Colour change Plumage colour Carotenoid Setophaga ruticilla 

Zusammenfassung

Altersabhängige Änderung im karotinoid-gefärbten Gefieder des Schnäpperwaldsängers Die Gefiederfärbung bei Vögeln dient verschiedensten Funktionen, darunter einer Signalfunktion für Artgenossen, der Tarnung und der Interaktion zwischen Räuber und Beute. Während es viele Untersuchungen gibt über den Farbwechsel bei Arten mit verzögerter Gefieder-Reifung, wenn Vögel ihr endgültiges Adult-Gefieder nicht vor der zweiten Brutsaison oder später aufweisen, gibt es relativ wenige Studien, die untersuchten, wie sich die Gefiederfärbung ändert, nachdem das endgültige Adult-Gefieder entwickelt ist. In dieser Studie über männliche und weibliche Schnäpperwaldsänger (Setophaga ruticilla), bei denen die Männchen eine verzögerte Gefieder-Reifung aufweisen, setzten wir die Reflexions-Photospektrometrie ein, um die Farbveränderung der karotinoid-gefärbten Schwanzfedern über 11 Brutzeiten zu untersuchen, und zwar sowohl intra-individuelle als auch populationsweite Veränderungen. Auf Populationsebene hatten Männchen in ihrer ersten Brutsaison im Adult-Gefieder einen Farbton der Federn, der mehr Richtung orange ging als Vögel im zweiten Jahr und etwas, aber nicht signifikant mehr Richtung orange gehend als Vögel im dritten Jahr des Adult-Gefieders. Intra-individuelle Analysen an wiedergefangenen Männchen in aufeinanderfolgenden Jahren zeigte mit zunehmendem Alter der Tiere auch eine Verschiebung des Farbtons der Federn weg von orange mehr Richtung gelb. Innerhalb der Individuen war die Farbintensität für rot am höchsten für Männchen im zweiten Jahr des Adult-Gefieders, zeigte aber keinen populationsweiten Effekt. Populationsweit zeigten weibliche Schnäpperwaldsänger in der ersten Brutsaison ein Gefieder mit höherer Farbintensität und geringerer Helligkeit für rot, verglichen mit Vögeln in ihrer zweiten Brutsaison, möglicherweise als ein Ergebnis von Zeitpunkt und äußeren Bedingungen der Mauser (die erstjährigen Schwanzfedern wachsen noch im Nest). Für sowohl Männchen als auch Weibchen gab es keinen Unterschied in der Gefiederfärbung zwischen Vögeln, die zum Untersuchungsort zurückkehrten und solchen, die nicht zurückkehrten. Insgesamt legen unsere Ergebnisse nahe, dass intra-individuelle Veränderungen unsere Beobachtungen besser erklären als eine Abhängigkeit von Überlebensraten. Wir regen an, dass die Untersuchung von altersabhängigen Farbveränderungen entscheidend sind für das Verständnis der Evolution komplexer Signalsysteme, wie das des Schnäpperwaldsängers.

Notes

Acknowledgments

We thank R. Norris, K. Langin, R. Germain, and numerous field assistants for help collecting feathers throughout this study. We thank N. Flood for helpful comments on earlier drafts of this manuscript. Funding for this project was provided by the National Science Foundation (PPM), Natural Sciences and Engineering Research Council Discovery Grants (MWR and LMR), and a CUEF U-REAP award (KLDM).

References

  1. Andersson S, Prager M, Johansson EIA (2007) Carotenoid content and reflectance of yellow and red nuptial plumages in Widowbirds (Euplectes spp.). Funct Ecol 21:272–281CrossRefGoogle Scholar
  2. Bitton PP, Dawson RD (2008) Age-related differences in plumage characteristics of male Tree Swallows Tachycineta bicolor: hue and brightness signal different aspects of individual quality. J Avian Biol 39:446–452Google Scholar
  3. Bitton PP, Dawson RD, Ochs CL (2008) Plumage characteristics, reproductive investment and assortative mating in Tree Swallows Tachycineta bicolor. Behav Ecol Sociobiol 62:1543–1550CrossRefGoogle Scholar
  4. Brooks R, Kemp DJ (2001) Can older males deliver the good genes? Trends Ecol Evol 6:308–313CrossRefGoogle Scholar
  5. Brush AH (1990) Metabolism of carotenoid pigments in birds. FASEB J 4:2969–2977PubMedGoogle Scholar
  6. Budden AE, Dickinson JL (2009) Signals of quality and age: the information content of multiple plumage ornaments in male Western Bluebirds Sialia mexicana. J Avian Biol 40:18–27CrossRefGoogle Scholar
  7. Delhey K, Kempenaers B (2006) Age differences in Blue Tit Parus caeruleus plumage colour: within-individual changes or colour biased survival? J Avian Biol 37:339–348CrossRefGoogle Scholar
  8. Dumbacher JP, Fleischer RC (2001) Phylogenetic evidence for colour pattern convergence in toxic pitohuis: Müllerian mimicry in birds? Proc R Soc Lond B 268:1971–1976Google Scholar
  9. Edler AU, Friedl TWP (2012) Age-related variation in carotenoid-based plumage ornaments of male Red Bishops Euplectes orix. J Ornithol 153:413–420CrossRefGoogle Scholar
  10. Fitze PS, Tschirren B, Richner H (2003) Carotenoid-based colour expression is determined early in nestling life. Oecologia 137:148–152PubMedCrossRefGoogle Scholar
  11. Germain RR, Reudink MW, Marra PP, Ratcliffe LM (2010) Carotenoid-based male plumage predicts parental investment in the American Redstart. Wilson J Ornithol 122:318–325CrossRefGoogle Scholar
  12. Germain RR, Reudink MW, Marra PP, Boag PT, Ratcliffe LM (2012) Delayed maturation of multiple signals in a migratory songbird. Behav Ecol Sociobiol 66:419–431CrossRefGoogle Scholar
  13. Gochfeld M, Burger J (1984) Age difference in foraging behavior of the American Robin (Turdus migratorius). Behaviour 88:227–239CrossRefGoogle Scholar
  14. Grunst AS, Rotenberry JT, Grunst ML (2014) Age-dependent relationships between multiple sexual pigments and condition in males and females. Behav Ecol 25:276–287CrossRefGoogle Scholar
  15. Hawkins GL, Hill GE, Mercadante A (2012) Delayed plumage maturation and delayed reproductive investment in birds. Biol Rev 87:257–274PubMedCrossRefGoogle Scholar
  16. Hill GE (1992) Proximate basis of variation in carotenoid pigmentation in male House Finches. Auk 109:1–12CrossRefGoogle Scholar
  17. Hill GE (1996) Subadult plumage in the house finch and tests of models for the evolution of delayed plumage maturation. Auk 113:858–874CrossRefGoogle Scholar
  18. Hill GE (2006) Female mate choice for ornamental coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 2. Function and evolution. Harvard University Press, Cambridge, pp 137–200Google Scholar
  19. Hill GE (2010) National Geographic bird coloration. National Geographic Society, Washington, DCGoogle Scholar
  20. Hill GE (2011) Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol Lett 14:625–634PubMedCrossRefGoogle Scholar
  21. Hill GE, Johnson JD (2012) The vitamin A-redox hypothesis: a biochemical basis for honest signaling via carotenoid pigmentation. Am Nat 180:E127–E150PubMedCrossRefGoogle Scholar
  22. Hill GE, Montgomerie R (1994) Plumage colour signals nutritional condition in the House Finch. Proc R Soc Lond B 258:47–52CrossRefGoogle Scholar
  23. Hill GE, Inouye CY, Montgomerie R (2002) Dietary carotenoids predict plumage colouration in wild House Finches. Proc R Soc Lond B 269:1119–1124CrossRefGoogle Scholar
  24. Hobson KA, Wassenaar LI, Bayne E (2004) Using isotopic variance to detect long-distance dispersal and philopatry in birds: an example with Ovenbirds and American Redstarts. Condor 106:732–743Google Scholar
  25. Jennisons MD, Møller AP, Petrie M (2001) Sexually selected traits and adult survival: a meta-analysis. Q Rev Biol 76:3–36Google Scholar
  26. Lemon RE, Perreault S, Lozano GA (1996) Breeding dispersion and site fidelity of American Redstarts (Setophaga ruticilla). Can J Zool 74:2238–2247CrossRefGoogle Scholar
  27. McGraw KJ, Hudon J, Hill GE, Parker RS (2005) A simple and inexpensive chemical test for behavioral ecologists to determine the presence of carotenoid pigments in animal tissues. Behav Ecol Sociobiol 57:391–397CrossRefGoogle Scholar
  28. Montgomerie R (2006) Analyzing colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1. Mechanisms and measurements. Harvard University Press, Cambridge, pp 90–147Google Scholar
  29. Montgomerie R (2008) CLR, version 1.05. Queen’s University, Kingston. http://post.queensu.ca/~mont/color/analyze.html. Accessed 10 Feb 2013
  30. Morrison ML, Slack RD, Shanley E Jr (1978) Age and foraging ability relationships of olivaceous cormorants. Wilson Bull 90:414–422Google Scholar
  31. Mumme RL (2014) White tail spots and tail-flicking behavior enhance foraging performance in the Hooded Warbler. Auk 131:141–149CrossRefGoogle Scholar
  32. Mumme RL, Galatowitsch ML, Jabloński PG, Stawarczyk TM, Cygan JP (2006) Evolutionary significance of geographic variation in a plumage-based foraging adaptation: an experimental test in the Slate-throated Redstart (Myioborus miniatus). Evolution 60:1086–1097PubMedCrossRefGoogle Scholar
  33. Ocean Optics (2012) Homepage. http://www.oceanoptics.com/homepage.asp. Accessed 9 Dec 2012
  34. Olsen VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514CrossRefGoogle Scholar
  35. Osmond MM, Reudink MW, Germain RR, Nocera JJ, Boag PT, Ratcliffe LM (2013) Relationships between carotenoid-based female plumage and age, reproduction and mate color in the American Redstart (Setophaga ruticilla). Can J Zool 91:589–595CrossRefGoogle Scholar
  36. Pagani-Núñez E, Senar JC (2012) Changes in carotenoid-based plumage colour in relation to age in European Serins Serinus serinus. IBIS 154:155–160CrossRefGoogle Scholar
  37. Procter-Gray E, Holmes RT (1981) Adaptive significance of delayed attainment of plumage in male American Redstarts: tests of two hypotheses. Evolution 35:742–751CrossRefGoogle Scholar
  38. Prum RO (2010) The Lande–Kirkpatrick mechanism is the null model of evolution by intersexual selection: implications for meaning, honesty, and design in intersexual signals. Evolution 64:3085–3100PubMedCrossRefGoogle Scholar
  39. Pyle P (1997) Molt limits in North American passerines. N Am Bird Bander 22:49–90Google Scholar
  40. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. Accessed 1 June 2014
  41. Reudink MW, Marra PP, Boag PT, Ratcliffe LM (2009a) Plumage coloration predicts paternity and polygyny in the American Redstart. Anim Behav 77:495–501CrossRefGoogle Scholar
  42. Reudink MW, Studds CE, Marra PP, Kyser TK, Ratcliffe LM (2009b) Plumage brightness predicts non-breeding season territory quality in a long-distance migratory songbird, the American Redstart Setophaga ruticilla. J Avian Biol 40:34–41CrossRefGoogle Scholar
  43. Reudink, MW, McKellar AE, Marini KLD, McArthur S, Marra PP, Ratcliffe LM (2015) Inter-annual variation in American redstart (Setophaga ruticilla) plumage colour is associated with rainfall and temperature during moult: an 11-year study. Oecologia. doi: 10.1007/s00442-014-3167-4 PubMedGoogle Scholar
  44. Robinson SK, Holmes RT (1982) Foraging behavior of forest birds: the relationship among search tactics, diet, and habitat structure. Ecology 63:1918–1931CrossRefGoogle Scholar
  45. Saks L, McGraw K, Hõrak P (2003) How feather colour reflects its carotenoid content. Func Ecol 17:555–561CrossRefGoogle Scholar
  46. Santos ESA, Scheck D, Nakagawa S (2011) Dominance and plumage traits: meta-analysis and metaregression analysis. Anim Behav 82:3–19CrossRefGoogle Scholar
  47. Serra L, Griggio M, Licheri D, Pilastro A (2007) Moult speed constrains the expression of a carotenoid-based sexual ornament. J Evol Biol 20:2028–2034PubMedCrossRefGoogle Scholar
  48. Siefferman L, Hill GE (2005) Male Eastern Bluebirds trade future ornamentation for current reproductive investment. Biol Lett 1:208–211PubMedCentralPubMedCrossRefGoogle Scholar
  49. Simpson KL (1983) Relative value of carotenoids as precursors of vitamin A. Proc Nutr Soc 42:7–17PubMedCrossRefGoogle Scholar
  50. Slagsvold T, Dale S, Kruszewicz A (1995) Predation favours cryptic colouration in breeding male Pied Flycatchers. Anim Behav 50:1109–1121CrossRefGoogle Scholar
  51. Smith JM (1979) Game theory and the evolution of behaviour. Proc R Soc Lond B 205:475–488PubMedCrossRefGoogle Scholar
  52. Studds CE, Kyser TK, Marra PP (2008) Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory bird. Proc Natl Acad Sci USA 105:2929–2933PubMedCentralPubMedCrossRefGoogle Scholar
  53. Sturm L (1945) A study of the nesting activity of the American Redstart. Auk 62:189–206CrossRefGoogle Scholar
  54. Tonra CM, Marini KLD, Marra PP, Germain RR, Holberton RL, Reudink MW (2014) Color expression in experimentally regrown feathers of an overwintering migratory bird: implications for signaling and seasonal interactions. Ecol Evol 4:122–1232CrossRefGoogle Scholar
  55. Val E, Quesada J, Senar JC (2010) Age-related differences in carotenoid-based plumage colouration are due to within-individual changes in Great Tits (Parus major). Ardea 98:179–184CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2015

Authors and Affiliations

  • Kristen L. D. Marini
    • 1
  • Ann E. McKellar
    • 2
  • Laurene M. Ratcliffe
    • 3
  • Peter P. Marra
    • 4
  • Matthew W. Reudink
    • 1
  1. 1.Department of Biological SciencesThompson Rivers UniversityKamloopsCanada
  2. 2.Environment CanadaSaskatoonCanada
  3. 3.Department of BiologyQueen’s UniversityKingstonCanada
  4. 4.Migratory Bird Center, Smithsonian Conservation Biology InstituteNational Zoological ParkWashingtonUSA

Personalised recommendations