Journal of Ornithology

, Volume 156, Issue 2, pp 489–498 | Cite as

Tree-cavity availability and selection by a large-bodied secondary cavity-nester: the Military Macaw

  • Sylvia Margarita de la Parra-Martínez
  • Katherine Renton
  • Alejandro Salinas-Melgoza
  • Luis Guillermo Muñoz-Lacy
Original Article


Large-bodied secondary cavity-nesters are constrained to use cavities of sufficient size to permit access, while also selecting characteristics to reduce predation. However, no information exists on nest-site availability for large-bodied secondary cavity-nesters in tropical forests. We located 12 tree-cavity nests of the threatened Military Macaw (Ara militaris) in tropical dry semi-deciduous forest in Jalisco, Mexico. For each nest, we determined cavity characteristics, and compared the structure of nest-trees with nearest-neighbor trees. We also established four 100 × 50 m transects in each of deciduous, semi-deciduous, and oak forest to determine tree-cavity availability over 6 ha. Military Macaw nest-sites occurred most frequently in cavities of live Enterolobium cyclocarpum trees. Nest-trees had significantly larger diameter and ramification height than the four nearest-neighbor trees, indicating that macaws selected tall emergent trees as nest-sites. Cavities used as nest-sites by Military Macaws were also in significantly larger trees, at a greater height, and had larger entrance diameter and depth than all accessible cavities. Height above the ground was the main criteria predicting nest-cavity selection, possibly to reduce predation risk. There was also a negative correlation of nest-cavity height with depth, suggesting a trade-off in which Military Macaws may select a nest-cavity high above the ground regardless of depth, but when using lower cavities these tend to be deeper. We found a low density of cavities with characteristics suitable for nesting, and these were concentrated in semi-deciduous forest. Our results demonstrate that the Military Macaw exhibits species-specific selection of nest-cavities, with a low density of cavities suitable for large-bodied secondary cavity-nesters in tropical forests.


Ara militaris Mexico Nest-site selection Psittacidae Trade-off Tropical dry forest 


Baumhöhlenangebot und Nistplatzwahl bei einem großen sekundären Höhlenbrüter: dem Soldatenara

Große sekundäre Höhlenbrüter sind auf Höhlen angewiesen, die groß genug sind, um Zugang zu bieten, gleichzeitig aber auch Eigenschaften aufweisen, welche das Prädationsrisiko verringern. Allerdings gibt es bislang keine Informationen zur Nistplatzverfügbarkeit für große sekundäre Höhlenbrüter in tropischen Wäldern. Wir ermittelten zwölf Nisthöhlen des bedrohten Soldatenaras Aramilitaris in einem trockenen Tropenmischwald in Jalisco, Mexiko. Für jedes Nest bestimmten wir die Höhleneigenschaften und verglichen die Struktur der Nistbäume mit den nächstbenachbarten Bäumen. Außerdem legten wir je vier 100 × 50 m-Transekte durch Laubwald, Mischwald und Eichenwald, um das Höhlenangebot auf einer Fläche von über sechs Hektar zu bestimmen. Die Soldatenara-Nester fanden sich am häufigsten in Höhlen lebender Enterolobium cyclocarpum-Bäume. Nistbäume waren von signifikant größerem Durchmesser und Verzweigungshöhe als die vier nächstbenachbarten Bäume, was darauf hindeutet, dass die Aras hoch herausragende Bäume als Brutplätze wählten. Die von den Soldatenaras genutzten Höhlen befanden sich in signifikant größeren Bäumen, in größerer Höhe und hatten größeren Eingangsdurchmesser und -tiefe als die übrigen zugänglichen Höhlen. Der Abstand vom Boden war das Hauptkriterium für eine Voraussage der Nisthöhlenwahl, möglicherweise weil dieser das Prädationsrisiko verringern kann. Außerdem bestand eine negative Korrelation zwischen der Höhe der Nisthöhle und deren Tiefe, was auf einen Kompromiss hindeutet, bei dem Soldatenaras bei der Wahl hochgelegener Nisthöhlen nicht auf deren Tiefe achten, bei niedrigerer gelegenen Höhlen aber tendenziell tiefere nutzen. Wir fanden nur eine geringe Dichte von zum Nisten geeigneten Höhlen, und diese konzentrierten sich auf den Mischwald. Unsere Ergebnisse zeigen, dass der Soldatenara eine artspezifische Nisthöhlenwahl zeigt, wobei die Dichte an für große sekundäre Höhlenbrüter geeigneten Baumhöhlen in tropischen Wäldern gering ist.



The study was conducted in partial fulfillment of a doctoral thesis by S.M.P.M. at the Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), who was supported by a student grant from the Consejo Nacional de Ciencia y Tecnología (CONACyT 220278). A.S.M. was supported by a Postdoctoral grant from CONACyT (98294), and L.G.M.L. was supported by a CONACyT Masters student grant. The research was funded by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (UNAM-DGAPA-PAPIIT grant IN203012) of UNAM, CONACyT 179877, and the Loro Parque Fundación A.C., to K.R. The Dirección General de Vida Silvestre of the Secretaria del Medio Ambiente y Recursos Naturales provided permits for the study, and the research complies with Mexican law. We are grateful to the Cajón de Peñas local community for permission to work on their lands, and thank Bonnie Jauregui for logistical support. Assistance in the field was provided by Christian A. Montes Medina, while Patricia Escalante and Miguel De Labra Hernández assisted with measurements of Military Macaw specimens in the Colección Nacional de Aves, of the Instituto de Biología, UNAM. Kristina Cockle and an anonymous reviewer provided constructive comments that improved the manuscript.


  1. Agrawal AA, Conner JK, Rasmann S (2010) Tradeoffs and adaptive negative correlations in evolutionary ecology. In: Bell M, Eanes W, Futuyma D, Levinton J (eds) Evolution after Darwin: the first 150 years. Sinauer, Sunderland, pp 243–268Google Scholar
  2. Aguiar-Carrara L, Zuquim-Antas PT, Souza-Yabe R (2007) Nidificação do gavião-relógio Micrastur semitorquatus (Aves: Falconidae) no Pantanal Mato-grossense: dados biométricos, dieta dos ninhegos e disputa com araras. Rev Bras Ornitol 15:85–93Google Scholar
  3. Aitken KEH, Martin K (2007) The importance of excavators in hole-nesting communities: availability and use of natural tree holes in old mixed forest in western Canada. J Ornithol 148:S425–S434CrossRefGoogle Scholar
  4. Bennet PM, Owens IPF (1997) Variation in extinction risk among birds: chance or evolutionary predisposition? Proc R Soc Lond B 264:401–408CrossRefGoogle Scholar
  5. Berkunsky I, Reboreda JC (2009) Nest-site fidelity and cavity reoccupation by Blue-fronted Parrots Amazona aestiva in the dry Chaco of Argentina. Ibis 151:145–150CrossRefGoogle Scholar
  6. Brightsmith DJ (2005) Competition, predation and nest niche shifts among tropical cavity nesters: phylogeny and natural history evolution of parrots (Psittaciformes) and trogons (Trogoniformes). J Avian Biol 36:64–73CrossRefGoogle Scholar
  7. Brightsmith D, Bravo A (2006) Ecology and management of nesting Blue-and-yellow Macaws (Ara ararauna) in Mauritia palm swamps. Biodivers Conserv 15:4271–4287CrossRefGoogle Scholar
  8. Byers CR, Steinhorst RK, Krausman PR (1984) Clarification of a technique for analysis of utilization-availability data. J Wildl Manag 48:1050–1053CrossRefGoogle Scholar
  9. Cameron M (2006) Nesting habitat of the Glossy Black Cockatoo in central New South Wales. Biol Conserv 127:402–410CrossRefGoogle Scholar
  10. Carneiro APB, Jiménez JE, Vergara PM, White TW Jr (2013) Nest-site selection by Slender-billed Parakeets in a Chilean agricultural-forest mosaic. J Field Ornithol 84:13–22CrossRefGoogle Scholar
  11. Carreón-Arroyo G (1997) Estimación poblacional, biología reproductiva y ecología de la nidificación de la Guacamaya verde (Ara militaris) en una selva estacional del oeste del estado de Jalisco. B.Sc. Dissertation, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  12. Citta JJ, Lindberg MS (2004) Nest site selection of passerines: effects of geographic scale and public and personal information. Ecology 88:2034–2046CrossRefGoogle Scholar
  13. Cockle K, Martin K, Wiebe K (2008) Availability of cavities for nesting birds in the Atlantic forest, Argentina. Ornitol Neotrop 19:269–278Google Scholar
  14. Cockle KL, Martin K, Drever MC (2010) Supply of tree-holes limits nest density of cavity-nesting birds in primary and logged subtropical Atlantic forest. Biol Conserv 143:2851–2857CrossRefGoogle Scholar
  15. Cockle K, Martin K, Wiebe K (2011) Selection of nest trees by cavity-nesting birds in the Neotropical Atlantic forest. Biotropica 43:228–236CrossRefGoogle Scholar
  16. Enkerlin-Hoeflich EC (1995) Comparative ecology and reproductive biology of three species of Amazona parrots in northeastern Mexico. PhD dissertation. Texas A&M UniversityGoogle Scholar
  17. Fernandes Seixas GH, Miranda Mourão G (2002) Nesting success and hatching survival of the Blue-fronted Amazon (Amazona aestiva) in the Pantanal of Mato Grosso do Sul, Brazil. J Field Ornithol 73:399–409CrossRefGoogle Scholar
  18. Forshaw JM (1989) Parrots of the world. Landsdown, MelbourneGoogle Scholar
  19. Garcia-Oliva F, Ezcurra E, Galicia L (1991) Pattern of rainfall distribution in the central Pacific coast of Mexico. Geogr Ann A 73:179–186CrossRefGoogle Scholar
  20. Gibbs JP, Hunter ML Jr, Melvin SM (1993) Snag availability and communities of cavity nesting birds in tropical versus temperate forests. Biotropica 25:236–241CrossRefGoogle Scholar
  21. Berkunsky I, Daniele G, Kacoliris FP, Dıaz-Luque JA, Silva Frias CP, Aramburu RM, Gilardi JD (2014) Reproductive parameters in the critically endangered Blue-throated Macaw: limits to the recovery of a parrot under intensive management. Plos ONE. doi:10.1371/journal.pone.0099941 PubMedCentralPubMedGoogle Scholar
  22. González JA (2003) Harvesting, local trade, and conservation of parrots in the northeastern Peruvian Amazon. Biol Conserv 114:437–446CrossRefGoogle Scholar
  23. Heinsohn R, Murphy S, Legge S (2003) Overlap and competition for nest holes among Eclectus Parrots, Palm Cockatoos and Sulphur-crested Cockatoos. Aust J Zool 51:81–94CrossRefGoogle Scholar
  24. Lanning DV, Shiflett JT (1983) Nesting ecology of Thick-billed Parrots. Condor 85:66–73CrossRefGoogle Scholar
  25. Li P, Martin TE (1991) Nest-site selection and nesting success of cavity-nesting birds in high elevation forest drainages. Auk 108:405–418Google Scholar
  26. Lindenmayer DB, Cunningham RB, Nix HA, Tanton MT, Smith AP (1991) Predicting the abundance of hollow-bearing trees in montane forests of southeastern Australia. Aust J Ecol 16:91–98CrossRefGoogle Scholar
  27. López-Lanus B (2000) Collared forest-falcon Micrastur semitorquatus courtship and mating, with take-over of a macaw nest. Cotinga 14:9–11Google Scholar
  28. Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Kluwer, DordrechtGoogle Scholar
  29. Marsden S, Fielding A (1999) Habitat association of parrots on the Wallacean islands of Buru, Seram and Sumba. J Biogeogr 26:439–446CrossRefGoogle Scholar
  30. Marsden S, Pilgrim JD, Wilkinson R (2001) Status, abundance and habitat use of Blue-eyed Cockatoo Cacatua ophthalmica on New Britain, Papua New Guinea. Bird Conserv Int 11:151–160CrossRefGoogle Scholar
  31. Monterrubio-Rico TC, Enkerlin-Hoeflich E (2004) Present use and characteristics of thick-billed parrot nest sites in Northwestern Mexico. J Field Ornithol 75:96–103CrossRefGoogle Scholar
  32. Monterrubio-Rico TC, Escalante-Pliego LP (2006) Richness, distribution and conservation status of cavity nesting birds in Mexico. Biol Conserv 128:67–78CrossRefGoogle Scholar
  33. Monterrubio-Rico TC, Ortega-Rodríguez J, Marin-Togo MC, Salinas-Melgoza A, Renton K (2009) Nesting habitat of the Lilac-crowned Parrot in a modified landscape in Mexico. Biotropica 41:361–368CrossRefGoogle Scholar
  34. Muñoz Lacy LG (2014) Uso del hábitat y recursos alimenticios por la guacamaya verde (Ara militaris) en la costa de Jalisco y su potencial para el ecoturismo. Masters dissertation, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  35. Neu CW, Byers CR, Peek JM (1974) A technique for analysis of utilization-availability data. J Wildl Manag 38:541–545CrossRefGoogle Scholar
  36. Newton I (1994) The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biol Conserv 70:265–276CrossRefGoogle Scholar
  37. Nilsson SG (1984) The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition. Ornis Scand 15:167–175CrossRefGoogle Scholar
  38. Olah G, Vigo G, Heinsohn R, Brightsmith DJ (2014) Nest site selection and efficacy of artificial nests for breeding success of Scarlet Macaws Ara macao macao in lowland Peru. J Nat Conserv 22:176–185CrossRefGoogle Scholar
  39. Ortega-Reyes J (2004) Composición de la fauna mastozoológica de la presa Cajón de Peña, Tomatlán, Jalisco. Rev Mex Mastozool 8:9–20Google Scholar
  40. Pennington TD, Sarukhán J (1998) Árboles Tropicales de México, 2nd edn. Fondo de Cultura Económica, Mexico CityGoogle Scholar
  41. Pinho JB, Nogueira FMB (2003) Hyacinth Macaw (Anodorhynchus hyacinthinus) reproduction in the northern Pantanal, Mato Grosso, Brazil. Ornitol Neotrop 14:29–38Google Scholar
  42. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Renton K, Brightsmith D (2009) Cavity use and reproductive success of nesting macaws in lowland forest of southeast Peru. J Field Ornithol 80:1–8CrossRefGoogle Scholar
  44. Renton K, Salinas-Melgoza A (1999) Nesting behavior of the lilac-crowned Parrot. Wilson Bull 111:488–493Google Scholar
  45. Rivera-Ortiz FA, Contreras-Gonzalez AM, Soberanes-Gonzalez CA, Valiente-Banuet A, Arizmendi MC (2008) Seasonal abundance and breeding chronology of the Military Macaw (Ara militaris) in a semi-arid region of Central Mexico. Ornitol Neotrop 19:255–263Google Scholar
  46. Rodríguez-Castillo A, Eberhard JR (2006) Reproductive behavior of the yellow-crowned parrot (Amazona ochrocephala) in Western Panama. Wilson J Ornithol 118:225–236CrossRefGoogle Scholar
  47. Rodríguez-Ferraro A, Sanz V (2007) Natural history and population status of the yellow-shouldered parrot on La Blanquilla Island, Venezuela. Wilson J Ornithol 119:602–609CrossRefGoogle Scholar
  48. Rzedowski J (2006) Vegetación de México, digital edition. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Accessed 8 October 2014
  49. Salinas-Melgoza A, Salinas-Melgoza V, Renton K (2009) Factors influencing nest spacing of a secondary cavity nesting parrot: habitat heterogeneity and proximity of conspecifics. Condor 111:305–313CrossRefGoogle Scholar
  50. Saunders DA (1979) The availability of tree hollows for use as nest sites by White-tailed Black Cockatoos. Aust Wildl Res 6:205–216CrossRefGoogle Scholar
  51. Saunders DA, Smith GT, Rowley I (1982) The availability and dimensions of tree hollows that provide nest sites for cockatoos (Psittaciformes) in Western Australia. Aust Wildl Res 9:541–556CrossRefGoogle Scholar
  52. Saunders DA, Mawson PR, Dawson R (2014) Use of tree hollows by Carnaby’s Cockatoo and the fate of large hollow-bearing trees at Coomallo Creek, Western Australia 1969–2013. Biol Conserv 177:85–193Google Scholar
  53. Selman R, Perrin M, Hunter M (2004) Characteristics and competition for nest sites by the Rüppell´s Parrot, Poicephalus rueppelli. Ostrich 75:89–94CrossRefGoogle Scholar
  54. Semarnat (2010) Norma Oficial Mexicana NOM-059-Semarnat-2010. Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario oficial 30 de diciembre de 2010: 1–78. Accessed 8 October 2014
  55. Snyder NFR, Wiley JW, Kepler CB (1987) The Parrots of Luquillo: natural history and conservation of the Puerto Rican Parrot. Western Foundation of Vertebrate Zoology, Los AngelesGoogle Scholar
  56. Vaughan C, Nemeth N, Marineros L (2003) Ecology and management of natural and artificial Scarlet Macaw (Ara macao) nest cavities in Costa Rica. Ornitol Neotrop 14:381–396Google Scholar
  57. Walker JS, Cahill AJ, Marsden SA (2005) Factors influencing nest-site occupancy and low reproductive output in the critically endangered Yellow-crested Cockatoo Cacatua sulphurea on Sumba, Indonesia. Bird Conserv Int 15:347–359CrossRefGoogle Scholar
  58. Wilcove DS (1985) Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66:1211–1214CrossRefGoogle Scholar
  59. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Sylvia Margarita de la Parra-Martínez
    • 1
  • Katherine Renton
    • 2
  • Alejandro Salinas-Melgoza
    • 1
    • 3
  • Luis Guillermo Muñoz-Lacy
    • 1
  1. 1.Posgrado en Ciencias Biológicas, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Estación de Biología Chamela, Instituto de BiologíaUniversidad Nacional Autónoma de MéxicoSan Patricio-MelaqueMexico
  3. 3.Centro Tlaxcala de Biología de la ConductaUniversidad Autónoma de Tlaxcala-CONACyTTlaxcalaMexico

Personalised recommendations