Journal of Ornithology

, Volume 156, Issue 2, pp 397–406 | Cite as

Contrasting population trends at seabirds colonies: is food limitation a factor in Norway?

  • Emeline Pettex
  • Robert T. Barrett
  • Svein-Håkon Lorentsen
  • Francesco Bonadonna
  • Lorien Pichegru
  • Jean-Baptiste Pons
  • David Grémillet
Original Article

Abstract

Norwegian Northern Gannet Morus bassanus populations exhibit contrasting trends on a regional scale, with several colony extinctions having occurred in recent decades. In an attempt to understand the ecological drivers of such variability, we tested whether resource availability is a factor limiting the current development of gannetries in the Lofoten/Vesterålen area. Between 2007 and 2010, we recorded arrival and departure times of breeding Northern Gannets from two colonies from regions showing contrasting population growth rates during the past two decades. We also recorded the duration of joint attendances by Northern Gannet parents at the nest, performed opportunistic diet sampling and counted numbers of occupied nests. Finally, we compiled ring recoveries over a 30-year period to assess inter-colony movements. Norwegian Gannet parents spent more time together, attending their chick, and performed shorter foraging trips than those in British and French colonies of similar size. This suggests that, despite some annual variations, their foraging effort was relatively low. Diet samples from both colonies mainly constituted fish of high energetic value, such as large herring Clupea harengus, mackerel Scomber scombrus, and saithe Pollachius virens, prey that are relatively abundant within the study area. Data from ringed birds revealed a northward movement of adults ringed as breeding birds and chicks from extinct Lofoten colonies that established a growing colony close to the North Cape. Recorded foraging features (trip duration, joint attendance and prey quality) during our study does not indicate food availability as a limiting factor explaining successive extinctions and re-colonisations of breeding sites in Lofoten/Vesterålen. White-tailed Eagles Haliaeetus albicilla are known to predate opportunistically on Northern Gannet adults or chicks and their populations are growing in the Lofoten area. Their potential impact on the Norwegian Northern Gannet population dynamics should be further investigated.

Keywords

Emigration Foraging effort Extinction Nest attendance Northern Gannets Population trends 

Zusammenfassung

Gegensätzliche Populationstrends in Seevogelkolonien: nahrungsknappheit als Einflussfaktor in Norwegen?

Norwegische Basstölpel Morus bassanus Populationen zeigen auf regionaler Ebene gegensätzliche Trends. Mehrere Kolonien gingen in den letzten Jahrzehnten verloren. Für das Verständnis der ökologischen Triebfedern solcher Variabilität untersuchten wir, ob Ressourcenverfügbarkeit ein limitierender Faktor in der aktuellen Entwicklung der Basstölpelbestände auf den Lofoten/Vesterålen ist. Von 2007 bis 2010 wurden Ankunfts- und Abflugzeiten brütender Basstölpel zweier Kolonien in Regionen erfasst, die gegensätzliche Populationswachstumsraten während der letzten zwei Jahrzehnte zeigen. Zusätzlich wurde die Dauer gemeinsamer Anwesenheit der beiden Brutpartner am Nest erfasst, es wurden Nahrungsproben gesammelt und besetzte Nester gezählt. Außerdem wurden zur Einschätzung von Bewegungen zwischen den Kolonien Ringablesungen aus 30 Jahren zusammengestellt. Norwegische Basstölpeleltern verbrachten zur Bewachung ihrer Küken mehr Zeit gemeinsam und unternahmen kürzere Nahrungsflüge als Vögel britischer und französischer Kolonien gleicher Größe. Dies zeigt, dass trotz jährlicher Variationen ihr Aufwand zur Nahrungssuche relativ gering war. Nahrungsproben aus beiden Kolonien bestanden hauptsächlich aus Fisch mit hohen Energiegehalten, wie große Heringe Clupea harengus, Makrelen Scomber scombrus und Köhler Pollachius virens. Diese Beutefische sind im Untersuchungsgebiet in großen Beständen vorhanden. Wiederfunde von Vögeln, die als Brutvögel und Küken in den erloschenen Lofoten-Kolonien beringt wurden, lassen eine nordwärts gerichtete Bewegung von Adulten erkennen, die umgesiedelt sind in eine wachsende Kolonie nahe des Nordkaps. Die in unserer Studie erfassten Parameter zur Nahrungssuche (Dauer von Nahrungsflügen, gemeinsame Nestanwesenheit und Beutequalität) deuten nicht daraufhin, dass die Nahrungsverfügbarkeit als limitierender Faktor zur Erklärung des sukzessiven Erlöschens und der Wiederbesiedlung von Brutplätzen auf den Lofoten/Vesterålen herangezogen werden kann. Die Bestände von Seeadlern Haliaeetus albicilla auf den Lofoten sind ansteigend und es ist bekannt, dass Seeadler als opportunistische Beutegreifer auch adulte wie juvenile Basstölpel erbeuten. Ihr potentieller Einfluss auf die Dynamik norwegischer Basstölpelpopulationen sollten weiter untersucht werden.

References

  1. Anker-Nilssen T (2006) The avifaunal value of the Lofoten Islands in a World Heritage perspective. NINA Report 201, TrondheimGoogle Scholar
  2. Barrett RT (2008) Recent establishments and extinctions of Northern Gannet Morus bassanus colonies in North Norway, 1995–2008. Ornis Norv 171–182Google Scholar
  3. Barrett RT, Folkestad AO (1996) The status of the North Atlantic Gannet Morus bassanus after 50 years in Norway. Seabird 18:30–37Google Scholar
  4. Barrett RT, Lorentsen SH, Anker-Nilssen T (2006) The status of seabirds breeding in mainland Norway. Atl Seab 8:97–126Google Scholar
  5. Barry Baker G, Wise BS (2005) The impact of pelagic longline fishing on the flesh-footed shearwater Puffinus carneipes in Eastern Australia. Biol Conserv 126:306–316. doi:10.1016/j.biocon.2005.06.001 CrossRefGoogle Scholar
  6. Birdlife International (2011) Species factsheet: Morus bassanus [WWW Document] URL http://www.birdlife.org
  7. Brun E (1972) Establishment and population increase of the gannet Sula bassana in Norway. Ornis Scand 3:27–38CrossRefGoogle Scholar
  8. Chardine JW, Rail JF, Wilhelm S (2013) Population dynamics of Northern gannets in North America, 1984–2009. J Field Ornithol 84(2):187–192CrossRefGoogle Scholar
  9. Crawford RJM, Dundee BL, Dyer BM, Klages NT, Meÿer MA, Upfold L (2007) Trends in numbers of Cape gannets (Morus capensis), 1956/57–2005/06, with a consideration of the influence of food and other factors. ICES J Mar Sci 64:169–177CrossRefGoogle Scholar
  10. Crawford R, Altwegg R, Barham B, Barham P, Durant J, Dyer B, Geldenhuys D, Makhado A, Pichegru L, Ryan P, Underhill L, Upfold L, Visagie J, Waller L, Whittington P (2011) Collapse of South Africa’s penguins in the early 21st century. Afr J Mar Sci 33:139–156. doi:10.2989/1814232X.2011.572377 CrossRefGoogle Scholar
  11. Fort J, Pettex E, Tremblay Y, Lorentsen S-H, Garthe S, Votier S, Pons JB, Siorat F, Furness RW, Grecian WJ, Bearhop S, Montevecchi WA, Grémillet D (2012) Meta-population evidence of oriented chain migration in northern gannets (Morus bassanus). Front Ecol Environ 10:237–242. doi:10.1890/110194 CrossRefGoogle Scholar
  12. Frederiksen M, Wanless S, Harris MP, Rothery P, Wilson LJ (2004) The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. J Appl Ecol 41:1129–1139. doi:10.1111/j.0021-8901.2004.00966.x CrossRefGoogle Scholar
  13. Furness RW (2007) Impacts of fisheries on seabird communities. Sci Mar 67. doi:10.3989/scimar.2003.67s233
  14. Garthe S, Camphuysen K, Furness RW (1996) Amounts of discards by commercial fisheries and their significance as food for seabirds in the North Sea. Mar Ecol Prog Ser 136:1–11. doi:10.3354/meps136001 CrossRefGoogle Scholar
  15. Gaston AJ (2004) Seabirds: a natural history. Poyser, LondonGoogle Scholar
  16. Grandgeorge M, Wanless S, Dunn TE, Maumy M, Beaugrand G, Grémillet D (2008) Resilience of the British and Irish seabird community in the twentieth century. Aquat Biol 4:187–199. doi:10.3354/ab00095 CrossRefGoogle Scholar
  17. Grémillet D, Pichegru L, Siorat F, Georges JY (2006) Conservation implications of the apparent mismatch between population dynamics and foraging effort in French northern gannets from the English Channel. Mar Ecol Prog Ser 319:15–25CrossRefGoogle Scholar
  18. Grémillet D, Pichegru L, Kuntz G, Woakes AG, Wilkinson S, Crawford RJ, Ryan PG (2008) A junk-food hypothesis for gannets feeding on fishery waste. Proc R Soc Lond B 275:1149–1156. doi:10.1098/rspb.2007.1763 CrossRefGoogle Scholar
  19. Gurney JH (1913) The gannet: a bird with a history. Witherby, LondonCrossRefGoogle Scholar
  20. Hailer F, Helander B, Folkestad AO, Ganusevich SA, Garstad S, Hauff P, Koren C, Nygård T, Volke V, Vilà C, Ellegren H (2006) Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol Lett 2:316–319. doi:10.1098/rsbl.2006.0453 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hamer KC, Monaghan P, Uttley JD, Walton P, Burns MD (1993) The influence of food supply on the breeding ecology of kittiwakes Rissa tridactyla in Shetland. Ibis 135:255–263. doi:10.1111/j.1474-919X.1993.tb02842.x CrossRefGoogle Scholar
  22. Hamer KC, Phillips RA, Wanless S, Harris MP, Wood AG (2000) Foraging ranges, diets and feeding locations of gannets Morus bassanus in the North Sea: evidence from satellite telemetry. Mar Ecol Prog Ser 200:257–264. doi:10.3354/meps200257 CrossRefGoogle Scholar
  23. Hamer KC, Phillips RA, Hill JK, Wanless S, Wood AG (2001) Contrasting foraging strategies of gannets Morus bassanus at two North Atlantic colonies: foraging trip duration and foraging area fidelity. Mar Ecol Prog Ser 224:283–290CrossRefGoogle Scholar
  24. Härkönen T (1986) Guide to the otoliths of the bony fishes of the northeast Atlantic. Danbiu, HellerupGoogle Scholar
  25. Harris MP, Freeman SN, Wanless S, Morgan BJT, Wernham CV (1997) Factors influencing the survival of puffins Fratercula arctica at a North Sea colony over a 20-year period. J Avian Biol 28:287–295CrossRefGoogle Scholar
  26. Heggøy O, Øien IJ (2014) Conservation status of birds of prey and owls in Norway. NOF/BirdLife Norway-Report 1-2014Google Scholar
  27. Hipfner JM, Blight LK, Lowe RW, Wilhelm SI, Robertson GJ, Barrett RT, Anker-Nilssen T, Good TP (2012) Unintended consequences: how the recovery of sea eagle Haliaeetus spp. populations in the northern hemisphere is affecting seabirds. Mar Ornithol 40:39–52Google Scholar
  28. Hislop JRG, Harris MP, Smith JGM (1991) Variation in the calorific value and total energy content of the lesser sandeel (Ammodytes marinus) and other fish preyed on by seabirds. J Zool 224:501–517. doi:10.1111/j.1469-7998.1991.tb06039.x CrossRefGoogle Scholar
  29. ICES (2009) Report of the ICES advisory committee on fishery management, advisory committee on the marine environment and advisory committee on ecosystems. The Barents sea and the Norwegian sea. Ecosystem overview. ICES, Copenhagen Google Scholar
  30. Jobling M, Breiby A (1986) The use and abuse of fish otoliths in studies of feeding habits of marine piscivores. Sarsia 71:265–274. doi:10.1080/00364827.1986.10419696 Google Scholar
  31. Jouventin P, Weimerskirch H (1990) Satellite tracking of Wandering albatrosses. Nature 343:746–748. doi:10.1038/343746a0 CrossRefGoogle Scholar
  32. Lewis S, Sherratt TN, Hamer KC, Wanless S (2001) Evidence of intra-specific competition for food in a pelagic seabird. Nature 412:816–819. doi:10.1038/35090566 PubMedCrossRefGoogle Scholar
  33. Lewis S, Hamer K, Money L, Griffiths R, Wanless S, Sherratt T (2004) Brood neglect and contingent foraging behavior in a pelagic seabird. Behav Ecol Sociobiol 56:81–88. doi:10.1007/s00265-004-0762-0 CrossRefGoogle Scholar
  34. Lewis S, Gremillet D, Daunt F, Ryan PG, Crawford RJM, Wanless S (2006) Using behavioural and state variables to identify proximate causes of population change in a seabird. Oecologia 147:606–614PubMedCrossRefGoogle Scholar
  35. Litzow MA, Piatt JF (2003) Variance in prey abundance influences time budgets of breeding seabirds: evidence from pigeon guillemots Cepphus columba. J Avian Biol 34:54–64. doi:10.1034/j.1600-048X.2003.02995.x CrossRefGoogle Scholar
  36. Monaghan P, Walton P, Wanless S, Uttley JD, Burns MD (1994) Effects of prey abundance on the foraging behaviour, diving efficiency and time allocation of breeding guillemots Uria aalge. Ibis 136:214–222. doi:10.1111/j.1474-919X.1994.tb01087.x CrossRefGoogle Scholar
  37. Montevecchi WA, Barrett RT (1987) Prey selection by gannets at breeding colonies in Norway. Ornis Scand 18:319–322CrossRefGoogle Scholar
  38. Montevecchi WA, Hufthammer AK (1990) Zooarchaeological implications for prehistoric distributions of seabirds along the norwegian coast. Arctic 43:110–114CrossRefGoogle Scholar
  39. Montevecchi WA, Barrett RT, Rikardsen F, Strann KB (1987) The population and reproductive status of the gannet Sula bassana in Norway in 1985. Fauna Nor Ser Cinclus 10:65–72Google Scholar
  40. Moss R, Wanless S, Harris MP (2002) How small Northern gannet colonies grow faster than big ones. Waterbirds 25:442–448CrossRefGoogle Scholar
  41. Orians GH, Pearson NE (1979) On the theory of centre place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of Ecological Systems. University of Ohio Press, Columbus, pp 154–177Google Scholar
  42. Oro D, Furness RW (2002) Influences of food availability and predation on survival of kittiwakes. Ecology 83:2516–2528CrossRefGoogle Scholar
  43. Oro D, Pradel R (2000) Determinants of local recruitment in a growing colony of Audouin’s gull. J Anim Ecol 69:119–132. doi:10.1046/j.1365-2656.2000.00379.x CrossRefGoogle Scholar
  44. Oro D, Cam E, Pradel R, Martínez-Abraín A (2004) Influence of food availability on demography and local population dynamics in a long-lived seabird. Proc R Soc Lond B 271:387–396. doi:10.1098/rspb.2003.2609 CrossRefGoogle Scholar
  45. Parrish JK, Marvier M, Paine RT (2001) Direct and indirect effects: interactions between bald eagles and common murres. Ecol Appl 11:1858–1869CrossRefGoogle Scholar
  46. Pettex E, Lorentsen S-H, Grémillet D, Gimenez O, Barrett RT, Pons J-B, Bohec CL, Bonadonna F (2012) Multi-scale foraging variability in northern gannet (Morus bassanus) fuels potential foraging plasticity. Mar Biol 159:2743–2756. doi:10.1007/s00227-012-2035-1 Google Scholar
  47. Pichegru L, Ryan PG, Crawford RJ, van der Lingen CD, Grémillet D (2010) Behavioural inertia places a top marine predator at risk from environmental change in the Benguela upwelling system. Mar Biol 157(3):537–544CrossRefGoogle Scholar
  48. Røttingen I (1990) A review of variability in the distribution and abundance of Norwegian spring spawning herring and Barents Sea capelin. Polar Res 8:33–42. doi:10.1111/j.1751-8369.1990.tb00373.x CrossRefGoogle Scholar
  49. Sakshaug E, Bjørge A, Gulliksen B, Loeng H, Mehlum F (1994) Structure, biomass distribution, and energetics of the pelagic ecosystem in the Barents Sea: a synopsis. Polar Biol 14:405–411. doi:10.1007/BF00240261 CrossRefGoogle Scholar
  50. Swanson GA, Krapu GL, Bartonek JC, Serie JR, Johnson DH (1974) Advantages in mathematically weighting waterfowl food habits data. J Wildl Manag 38:302–307. doi:10.2307/3800737 CrossRefGoogle Scholar
  51. Tasker ML, Camphuysen CJ, Cooper J, Garthe S, Montevecchi WA, Blaber SJM (2000) The impacts of fishing on marine birds. ICES J Mar Sci J Cons 57:531–547. doi:10.1006/jmsc.2000.0714 CrossRefGoogle Scholar
  52. Valeur P (1947) Havhesten og havsula på Rundøy. Naturen 70:370–379Google Scholar
  53. Votier SC, Bearhop S, Ratcliffe N, Phillips RA, Furness RW (2004) Predation by great skuas at a large Shetland seabird colony. J Appl Ecol 41:1117–1128. doi:10.1111/j.0021-8901.2004.00974.x CrossRefGoogle Scholar
  54. Wanless S, Harris MP, Morris JA (1990) A comparison of feeding areas used by individual common murres (Uria aalge), razorbills (Alca torda) and an Atlantic puffin (Fratercula arctica) during the breeding season. Colon Waterbirds 13:16–24. doi:10.2307/1521416 CrossRefGoogle Scholar
  55. Wanless S, Murray S, Harris MP (2005a) The status of Northern Gannet in Britain and Ireland in 2003/04. Br Birds 98:280–294Google Scholar
  56. Wanless S, Harris MP, Redman P, Speakman JR (2005b) Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar Ecol Prog Ser 294:1–8. doi:10.3354/meps294001 CrossRefGoogle Scholar
  57. Wanless S, Frederiksen M, Harris MP, Freeman SN (2006) Survival of gannets Morus bassanus in Britain and Ireland, 1959–2002. Bird Study 53:79–85. doi:10.1080/00063650609461419 CrossRefGoogle Scholar
  58. Watt J, Pierce GJ, Boyle PR (1997) Guide to the identification of North sea fish using premaxillae and vertebrae. ICES cooperative research report no. 220. ICES, CopenhagenGoogle Scholar
  59. Zador SG, Piatt JF (1999) Time-budgets of common murres at a declining and increasing Colony in Alaska. Condor 101:149–152. doi:10.2307/1370455 CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Emeline Pettex
    • 1
    • 2
  • Robert T. Barrett
    • 3
  • Svein-Håkon Lorentsen
    • 4
  • Francesco Bonadonna
    • 1
  • Lorien Pichegru
    • 5
    • 6
    • 7
  • Jean-Baptiste Pons
    • 1
    • 8
  • David Grémillet
    • 1
    • 6
  1. 1.UMR 5175, Centre d’Ecologie Fonctionnelle et EvolutiveCentre National de la Recherche ScientifiqueMontpellier Cedex 5France
  2. 2.Centre de Recherche sur les Ecosystèmes d’Altitude, Observatoire du Mont-BlancChamonixFrance
  3. 3.Tromsø MuseumUniversity of TromsøTromsøNorway
  4. 4.Norwegian Institute for Nature ResearchTrondheimNorway
  5. 5.Department of ZoologyNelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
  6. 6.DST/NRF Centre of Excellence, Percy FitzPatrick Institute of African OrnithologyUniversity of Cape TownCape TownSouth Africa
  7. 7.Seabird DivisionBirdLife South AfricaRandburgSouth Africa
  8. 8.Société d’Echantillonnage et d’Ingénierie Scientifique en EnvironnementIle MolèneFrance

Personalised recommendations