Advertisement

Journal of Ornithology

, Volume 156, Issue 2, pp 371–380 | Cite as

Blood parasite prevalence in the Bluethroat is associated with subspecies and breeding habitat

  • Aleš Svoboda
  • Gunnhild Marthinsen
  • Václav Pavel
  • Bohumír Chutný
  • Lucia Turčoková
  • Jan T. Lifjeld
  • Arild Johnsen
Original Article

Abstract

Long-distance migratory birds are potentially exposed to a range of blood sucking arthropods that transmit avian blood parasites. Because of differential vector exposure, the parasite fauna may vary in different habitat types, among populations, or even within populations where individuals travel to different areas during migration. We applied PCR-based molecular techniques to determine patterns of blood parasite occurrence in adults of seven geographically isolated Bluethroat populations, belonging to three distinct subspecies differing in habitat preferences and wintering areas (Luscinia svecica svecica, L. s. cyanecula, L. s. namnetum). Moreover, to elucidate potential transmission of blood parasites on breeding sites, we tested adults of the relatively sedentary White-throated Dipper (Cinclus cinclus) from a Norwegian population. Across populations, we detected infection of at least one blood parasite genus in 68.5 % (139/203) of adult Bluethroats. The most common parasite genus was Plasmodium (10 lineages, 33.5 % of surveyed individuals), present in all seven populations, followed by Leucocytozoon (four lineages, 31.5 %) and Haemoproteus (two lineages, 4.9 %). We recorded multiple infections in 26.1 % of individuals. Leucocytozoon was found only in svecica inhabiting mountainous/subalpine areas with high abundance of blackflies, the main vector for this parasite. In Plasmodium, two lineages (BT6 and GRW4) were confined to specimens from svecica populations. In contrast, Lineage SGS1 was dominated by southern birds of the subspecies cyanecula and namnetum. Our data suggest transmission of Leucocytozoon on the breeding grounds in Norway as the same lineages were found in relatively sedentary White-throated Dippers as in migratory Bluethroats. We discuss these results in light of the ecological differences between the host populations, affecting their exposure to potential blood parasite vectors.

Keywords

Lusciniasvecica Migratory passerine Haemosporidians PCR-based detection 

Zusammenfassung

Die Prävalenz von Blutparasiten beim Blaukehlchen ist verknüpft mit der Unterart und dem Bruthabitat

Langstreckenzieher sind potentiell einer Reihe von blutsaugenden Arthropoden ausgesetzt, die aviäre Blutparasiten übertragen. Da sie Vektoren unterschiedlich stark ausgesetzt sind, kann die Parasitenfaune variieren in verschiedenen Habitattypen, zwischen Population oder sogar innerhalb von Populationen, deren Individuen in unterschiedliche Gebiete ziehen. Zur Anwendung kamen PCR-basierte molekulare Techniken, um die Muster des Auftretens von Blutparasiten adulter Blaukehlchen aus sieben geografisch voneinander isolierten Populationen zu bestimmen. Die untersuchten Individuen gehören zu drei Unterarten, die sich in Habitatpräferenzen und Überwinterungsgebieten unterscheiden (Luscinia svecica svecica, L. s. cyanecula, L. s. namnetum). Zur Aufklärung einer potentiellen Übertragung von Blutparasiten in den Brutgebieten untersuchten wir darüber hinaus als Standvögel adulte Wasseramseln (Cinclus cinclus) einer norwegischen Population. In allen Populationen entdeckten wir eine Infektion mit mindestens einem Blutparasiten-Genus in 68,5 % (139/203) der adulten Blaukehlchen. Der häufigste Parasit, Plasmodium (10 Stämme, 33,5 % der untersuchten Individuen), konnte in allen sieben Populationen nachgewiesen werden. Darauf folgen Leukozytozoon (4 Stämme, 31,5 %) und Haemoproteus (2 Stämme, 4,9 %). Bei 26,1 % der Individuen beobachteten wir Mehrfachinfektionen. Leukozytozoon konnte nur bei ‘svecica-Individuen’ nachgewiesen werden. Diese Unterart besiedelt bergige/subalpine Gebiete mit hohen Dichten von Kriebelmücken, dem Hauptüberträger dieses Parasiten. Bei Plasmodium waren zwei Stämme (BT6 and GRW4) begrenzt auf Exemplare der svecica-Populationen. Im Gegensatz dazu war der Stamm SGS1 dominiert von südlichen Vögeln der Unterarten cyanecula und namnetum. Unsere Daten deuten auf eine Übertragung von Leukozytozoon in den norwegischen Brutgebieten hin, da die gleichen Stämme sowohl bei Wasseramseln als Standvögel als auch in Blaukehlchen als Zugvogelart gefunden wurden. Wir diskutieren diese Ergebnisse im Hinblick auf ökologische Unterschiede zwischen Wirtspopulationen, beeinflusst durch die Gefährdung einer potentiellen Übertragung von Blutparasiten.

Notes

Acknowledgments

We thank Hotel Luční bouda and the Administration of the Krkonoše National Park for their help with arranging the authors' stay in Krkonoše Mts. We are grateful to the Royal Swedish Academy of Sciences (Abisko Scientific Research Station) and to Natalia Iovchenko (Saint Petersburg State University, Russian Federation) for logistic support, and to Sophie Questiau for providing blood samples from the namnetum population. Special thanks to Jarl A. Anmarkrud, Trond Øigarden, Oddmund Kleven, Anders Herfoss and Petr Nádvorník for their advices and help with lab work. Blood sampling was performed with permission from the relevant national authorities. Funding for this research was supplied by grants of the Ministry of Education, Youth, and Sports of the Czech Republic (MSM6198959212), by the Faculty of Science of Palacky University, the Research Council of Norway and the National Centre for Biosystematics, University of Oslo, Norway.

References

  1. Allander K, Gordon FB (1994) Prevalence and intensity of haematozoan infection in a population of great tits Parus major from Gotland, Sweden. J Avian Biol 25:69–74CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  3. Atkinson CT, van Riper C (1991) Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon and Haemoproteus. In: Loye JE, Zuk M (eds) Bird–parasite interactions, ecology, evolution and behaviour. Oxford University Press, Oxford, pp 19–48Google Scholar
  4. Bakken V, Runde O, Tjørve E (2006) Norwegian bird ringing atlas, vol 2. Stavanger Museum, Stavanger, pp 145–150Google Scholar
  5. Bensch S, Stjernman M, Hasselquist D, Östman Ö, Hansson B, Westerdahl H, Pinheiro RT (2000) Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc R Soc Lond B 267:1583–1589CrossRefGoogle Scholar
  6. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol Resour 9:1353–1358PubMedCrossRefGoogle Scholar
  7. Constant P, Eybert MC (1995) Donnees sur la reproduction et l’hivernage de la gorgebleue Luscinia svecica namnetum. Alauda 63:29–36Google Scholar
  8. Cramp S (ed) (1992) The birds of the western palearctic, vol VI. Oxford University Press, OxfordGoogle Scholar
  9. del Hoyo J, Elliott A, Christie DA (eds) (2005) Handbook of the birds of the world, vol 10. Cockoos-shrikes to Thrushes, Lynx EdicionsGoogle Scholar
  10. Dunn JC, Cole EF, Quinn JL (2011) Personality and parasites: sex-dependent associations between avian malaria infection and multiple behavioural traits. Behav Ecol Socbiol 65:1459–1471CrossRefGoogle Scholar
  11. Ellegren H, Staav R (1990) Blåhakens Luscinia s. svecica flytting-en återfyndsanalys av fåglar märkte i Sverige och Finland. Vår Fågelvärd 49:323–336Google Scholar
  12. Fernández M, Rojo MÁ, Casanueva P, Carrión S, Hernández MÁ, Campos F (2010) High prevalence of haemosporidians in Reed Warbler Acrocephalus scirpaceus and Sedge Warbler Acrocephalus schoenobaenus in Spain. J Ornithol 151:27–32CrossRefGoogle Scholar
  13. Hellgren O (2005) The occurrence of haemosporidian parasites in the Fennoscandian Bluethroat (Luscinia svecica) population. J Ornithol 146:55–60CrossRefGoogle Scholar
  14. Hellgren O, Waldenström J, Bensch S (2004) A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium and Haemoproteus from avian blood. J Parasitol 90:797–802PubMedCrossRefGoogle Scholar
  15. Hellgren O, Wood MJ, Waldenström J, Hasselquist D, Ottosson U, Stervander M, Bensch S (2013) Circannual variation in blood parasitism in a sub-Saharan migrant passerine bird, the garden warbler. J Evol Biol. doi: 10.1111/jeb.12129 PubMedGoogle Scholar
  16. Johnsen A, Andersson S, Fernandez JG, Kempenaers B, Pavel V, Questiau S, Raess M, Rindal E, Lifjeld JT (2006) Molecular and phenotypic divergence in the bluethroat (Luscinia svecica) subspecies complex. Mol Ecol 15:4033–4047PubMedCrossRefGoogle Scholar
  17. Knowles SCL, Wood MJ, Sheldon BC (2010a) Context-dependent effects of parental effort on malaria infection in a wild bird population, and their role in reproductive trade-offs. Oecologia 164:87–97PubMedCrossRefGoogle Scholar
  18. Knowles SCL, Palinauskas V, Sheldon BC (2010b) Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol 23:557–569PubMedCrossRefGoogle Scholar
  19. Korpimaki E, Hakkarainen H, Bennett GF (1993) Blood parasites and reproductive success of Tengmalm Owls—detrimental effects on females but not on males. Funct Ecol 7:420–426CrossRefGoogle Scholar
  20. Kulma K, Low M, Bensch S, Qvarnström A (2013) Malaria infections reinforce competitive asymmetry between two Ficedula flycatchers in a recent contact zone. Mol Ecol 22:4591–4601PubMedCrossRefGoogle Scholar
  21. Lachish S, Knowles SCL, Alves R, Wood MJ, Sheldon BC (2011) Infection dynamics of endemic malaria in a wild bird population: parasite species-dependent drivers of spatial and temporal variation in transmission rates. J Anim Ecol 80:1207–1216PubMedCrossRefGoogle Scholar
  22. Latta SC, Ricklefs RE (2010) Prevalence patterns of avian haemosporida on Hispaniola. J Avi Biol 41:25–33CrossRefGoogle Scholar
  23. Loiseau C, Harrigan RJ, Robert A, Bowie RCK, Thomassen HA, Smith TB, Sehgal RNM (2011) Host and habitat specialization of avina malaria in Africa. Mol Ecol. doi: 10.1111/j.1365-294X.2011.05341.x PubMedCentralPubMedGoogle Scholar
  24. Marzal A, Bensch S, Reviriego M, Balbontin J, de Lope F (2008) Effects of malaria double infection in birds: one plus one is not two. J Evol Biol 21:979–987PubMedCrossRefGoogle Scholar
  25. Merino S, Moreno J, Sanz JJ, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc B 267:2507–2510PubMedCentralPubMedCrossRefGoogle Scholar
  26. Ortego J, Cordero PJ, Aparicio MJ, Calabuig G (2008) Consequences of chronic infections with three different avian malaria lineages on reproductive performance of Lesser Kestrels (Falco naumanni). J Ornithol 149:337–343CrossRefGoogle Scholar
  27. Ots I, Horak P (1998) Health impact of blood parasites in breeding great tits. Oecologia 116:441–448CrossRefGoogle Scholar
  28. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290PubMedCrossRefGoogle Scholar
  29. Reullier J, Perez-Tris J, Bensch S, Secondi J (2006) Diversity, distribution and exchange of blood parasites meeting at an avian moving contact zone. Mol Ecol 15:753–763 PubMedCrossRefGoogle Scholar
  30. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/
  31. Schliep KP (2011) Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593PubMedCentralPubMedCrossRefGoogle Scholar
  32. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69:82–90CrossRefGoogle Scholar
  33. Shurulinkov P, Golemansky V (2002) Haemoproteids (Haemoproteida: Haemoproteidae) of wild birds in Bulgaria. Acta Protozool 41:359–374Google Scholar
  34. Shurulinkov P, Ilieva M (2009) Spatial and temporal differences in the blood parasite fauna of passerine birds during the spring migration in Bulgaria. Parasitol Res 104:1453–1458PubMedCrossRefGoogle Scholar
  35. Svensson L (1992) Identification Guide to European Passerines, 4th edn. British Trust for OrnithologyGoogle Scholar
  36. Svoboda A, Marthinsen G, Turcokova L, Lifjeld JT, Johnsen A (2009) Identification of blood parasites in old world warbler species from the Danube river delta. Avian Dis 53:634–636PubMedCrossRefGoogle Scholar
  37. Szoellosi E, Cichon M, Eens M, Hasselquist D, Kempenaers B, Merino S, Nilsson JA, Rosivall B, Rytkonen S, Torok J, Wood MJ, Garamszegi LZ (2011) Determinants of distribution and prevalence of avian malaria in blue tit populations across Europe: separating host and parasite effects. J Evol Biol 24:2014–2024CrossRefGoogle Scholar
  38. Ventim R, Morais J, Pardal S, Mendes L, Ramos JA, Péres-Tris J (2012) Host–parasite associations and host-specificity in haemoparasites of reed bed passerines. Parasitology 139:310–316PubMedCrossRefGoogle Scholar
  39. Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ottosson U (2002) Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol Ecol 8:1545–1554CrossRefGoogle Scholar
  40. Waldenström J, Bensch S, Kiboi S, Hasselquist D, Ostman O (2004) A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. J Parasitol 90:191–194PubMedCrossRefGoogle Scholar
  41. Yohannes E, Hansson B, Lee RW, Waldenström J, Westerdahl H, Akesson M, Hasselquist D, Bensch S (2008) Isotope signatures in winter moulted feathers predict malaria prevalence in a breeding avian host. Oecologia 158:299–306PubMedCrossRefGoogle Scholar
  42. Yohannes E, Krizanauskiene A, Valcu M, Bensch S, Kempenaers B (2009) Prevalence of malaria and related haemosporidian parasites in two shorebird species with different winter habitat distribution. J Ornithol 150:287–291CrossRefGoogle Scholar
  43. Zink RM, Drovetski SV, Questiau S, Fadeev IV, Nesterov EV, Westberg MC, Rohwer S (2003) Recent evolutionary history of the bluethroat (Luscinia svecica) across Eurasia. Mol Ecol 12:3069–3075PubMedCrossRefGoogle Scholar
  44. Zucca M, Jiguet F (2002) Status of bluethroat in France: breeding, migration and wintering. Ornithos 9:242–252Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Aleš Svoboda
    • 1
  • Gunnhild Marthinsen
    • 2
  • Václav Pavel
    • 1
  • Bohumír Chutný
    • 3
  • Lucia Turčoková
    • 4
  • Jan T. Lifjeld
    • 2
  • Arild Johnsen
    • 2
  1. 1.Department of Zoology and Laboratory of Ornithology, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  2. 2.Natural History Museum, University of OsloOsloNorway
  3. 3.PragueCzech Republic
  4. 4.Katedra zoológie, Prírodovedecká fakultaUniverzita Komenského, Mlynská dolinaBratislava 4Slovakia

Personalised recommendations