Advertisement

Relationships between plumage coloration, diet diversity, and winter body condition in the Lesser Goldfinch

Abstract

Bright and colorful plumage is thought to be an honest signal of individual quality in birds because consuming high-quality forage results in more colorful plumage. To gain insight into the ecological and evolutionary context of the relationship between color, body condition, and diet, we studied a mostly urban population of Lesser Goldfinches (Spinus psaltria). We collected body measurements and digital photographs of plumage, as well as feathers and blood of goldfinches during three winters (2009–2012) in northern Nevada, USA. We analyzed the body tissues (feathers and blood) for stable isotope values of carbon and nitrogen to infer the diets of individual goldfinches, and quantified CIELAB color space values of chroma, brightness, and hue of plumage from the digital images. We then examined the relationships between color values and body condition, and color and stable isotope values. We found that the brightness (L* value) of the back plumage was correlated with both body condition and with stable isotope values of nitrogen (δ15N) in the winter diet. Furthermore, stable isotope analyses of both feathers and blood showed temporal differences in diet. However, hue and chroma, which are color values that are thought to more directly represent feather carotenoid content, were not related to body condition or diet. Our results suggest that the foraging ecology of Lesser Goldfinches changes over time, and that, in winter, plumage color values that are putatively indicative of carotenoid content do not seem to be an honest signal of individual quality as measured by body condition.

Zusammenfassung

Beziehungen zwischen Gefiederfärbung, Nahrungsvielfalt und Körperkondition im Winter bei Mexikozeisigen Spinus psaltria

Glänzendes und buntes Gefieder bei Vögeln stellt wahrscheinlich ein ehrliches Signal individueller Qualität dar, da das Verzehren hochwertiger Nahrung in bunterem Gefieder resultiert. Um Einblicke in den ökologischen und evolutionären Kontext der Beziehung zwischen Farbe, Körperkondition und Ernährung zu gewinnen, haben wir eine größtenteils städtische Population des Mexikozeisigs (Spinus psaltria) untersucht. Über drei Winter (2009–2012) haben wir im Norden Nevadas (USA) Körpermaße ermittelt, Digitalfotos des Gefieders aufgenommen sowie Federn und Blut von Mexikozeisigen gesammelt. Wir haben die Körpergewebe (Federn und Blut) hinsichtlich stabiler Isotopenwerte von Kohlenstoff und Stickstoff analysiert, um Rückschlüsse auf die Nahrung individueller Mexikozeisige zu ziehen, und haben anhand der Gefiederfotos Farbsättigung, Helligkeit und Farbton auf der Basis des CIELAN-Farbraums quantifiziert. Dann haben wir die Beziehungen zwischen diesen Farbwerten und der Körperkondition bzw. den stabilen Isotopenwerten untersucht. Wir fanden, dass die Helligkeit (L*-Wert) des Rückengefieders mit der Köperkondition sowie mit den Werten stabiler Stickstoffisotope (15 N) in der Winternahrung korreliert war. Des Weiteren zeigten die Isotopenanalysen von Federn sowie Blut zeitliche Unterschiede in der Nahrung auf. Farbton und Farbsättigung standen jedoch nicht in Bezug zur Körperkondition oder Ernährung, obwohl sie den Carotinoidgehalt von Federn wahrscheinlich unmittelbarer anzeigen. Unsere Ergebnisse deuten darauf hin, dass sich die Nahrungsökologie von Mexikozeisigen über die Zeit verändert und dass im Winter Gefiederfarbwerte, die vermeintlich den Carotinoidgehalt anzeigen, offenbar kein ehrliches Signal individueller Qualität (wie anhand der Köperkondition gemessen) darstellen.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

References

  1. Beaulieu M, Sockman KW (2012) One meadow for two sparrows: resource partitioning in a high elevation habitat. Oecologia 170:529–540

  2. Blount JD (2004) Carotenoids and life-history evolution in animals. Arch Biochem Biophys 430:10–15

  3. Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440

  4. Burnham KP, Anderson DR (2002) Model selection and inference: a practical information-theoretic approach. Springer, New York

  5. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (δ15N and δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

  6. Darimont CT, Paquet PC, Reimchen TE (2007) Stable isotopic niche predicts fitness of prey in a wolf–deer system. Biol J Linn Soc 90:125–137

  7. Darwin C (1859) On the origin of species. John Murray, London

  8. Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, London

  9. Delhey K, Peters A, Kempenaers B (2007) Cosmetic coloration in birds: occurrence, function, and evolution. Am Nat 169:S145–S158

  10. DeNiro M, Epstein S (1978) Influence of diet on distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506

  11. Emlen ST, Oring LW (1977) Ecology, sexual selection, and the evolution of mating systems. Science 197:215–223

  12. Emlen DJ, Warren IA, Johns A, Dworkin U, Lavine LC (2012) A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337:860–864

  13. Gray DA (1996) Carotenoids and sexual dichromatism in North American passerine birds. Am Nat 148:453–480

  14. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

  15. Guindre-Parker S, Love OP (2013) Revisiting the condition-dependence of melanin-based plumage. J Avian Biol 44:1–5

  16. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387

  17. Hammerschlag-Peyer CM, Yeager LA, Araújo MS, Layman CA (2011) A hypothesis-testing framework for studies investigating ontogenetic niche shifts using stable isotope ratios. PLoS One 6:e27104

  18. Hill GE (2000) Energetic constraints on expression of carotenoid-based plumage coloration. J Avian Biol 31:559–566

  19. Hsu Y-C, Shaner P-J, Chang C-I, Ke L, Kao S-J (2014) Trophic niche width increases with bill-size variation in a generalist passerine: a test of niche variation hypothesis. J Anim Ecol 83:450–459

  20. Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461

  21. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—stable isotope Bayesian ellipses in R. J Anim Ecol 80:595–602

  22. Järvi T, Røskaft E, Bakken M, Zumsteg B (1987) Evolution of variation of male secondary sexual characteristics. Behav Ecol Sociobiol 20:161–169

  23. Johnson K, Rosetta D, Burley DN (1993) Preferences of female American Goldfinches (Carduelis tristis) for natural and artificial male traits. Behav Ecol 4:138–143

  24. Kempster B, Zanette L, Longstaffe FJ, MacDougall-Shackleton SA, Wingfield JC, Clinchy M (2007) Do stable isotopes reflect nutritional stress? Results from a laboratory experiment on song sparrows. Oecologia 151:365–371

  25. Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

  26. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, New York

  27. Lenouvel P, Gomez D, Théry M, Kreutzer M (2009) Do grooming behaviours affect visual properties of feathers in male domestic canaries, Serinus canaria? Anim Behav 77:1253–1260

  28. Linsdale JM (1957) Goldfinches on the Hastings natural history reservation. Am Midl Nat 57:1–119

  29. Lopez-Rull I, Pagan I, Macias Garcia C (2010) Cosmetic enhancement of signal coloration: experimental evidence in the house finch. Behav Ecol 21:781–787

  30. McGraw KJ (2004) Winter plumage coloration in male American Goldfinches: do reduced ornaments serve signaling functions in the non-breeding season? Ethology 110:707–715

  31. McGraw KJ (2008) An update on the honesty of melanin-based color signals in birds. Pigment Cell Melanoma Res 21:133–138

  32. McGraw KJ, Hill GE (2000) Differential effects of endoparasitism on the expression of carotenoid- and melanin-based ornamental coloration. Proc R Soc B Biol Sci 267:1525–1531

  33. McGraw KJ, Hill GE, Stradi R, Parker RS (2001) The influence of carotenoid acquisition and utilization on the maintenance of species-typical plumage pigmentation in male American Goldfinches (Carduelis tristis) and Northern Cardinals (Cardinalis cardinalis). Physiol Biochem Zool 74:843–852

  34. McGraw KJ, Hill GE, Stradi R, Parker RS (2002) The effect of dietary carotenoid access on sexual dichromatism and plumage pigment composition in the American Goldfinch. Comp Biochem Physiol B Biochem Mol Biol 131:261–269

  35. McGraw KJ, Hill GE, Parker RS (2005) The physiological costs of being colourful: nutritional control of carotenoid utilization in the American Goldfinch, Carduelis tristis. Anim Behav 69:653–660

  36. Michalik A, McGill RAR, Furness RW, Eggers T, van Noordwijk HJ, Quillfeldt P (2010) Black and white—does melanin change the bulk carbon and nitrogen isotope values of feathers? Rapid Commun Mass Spectrom 24:875–878

  37. Olson VA, Owens IPF (1998) Costly sexual signals: are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514

  38. Paritte JM, Kelly JF (2009) Effect of cleaning regime on stable-isotope ratios of feathers in Japanese Quail (Coturnix japonica). Auk 126:165–174

  39. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS One 5:e9672

  40. Peig J, Green AJ (2009) New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118:1883–1891

  41. Peig J, Green AJ (2010) The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct Ecol 24:1323–1332

  42. Pérez-Rodríguez L, Mougeot F, Bortolotti GR (2011) The effects of preen oils and soiling on the UV–visible reflectance of carotenoid-pigmented feathers. Behav Ecol Sociobiol 65:1425–1435

  43. Podlesak DW, McWilliams SR, Hatch KA (2005) Stable isotopes in breath, blood, feces, and feathers can indicate intra-individual changes in the diet of migratory songbirds. Oecologia 142:501–510

  44. Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

  45. Pyle P (1997) Identification guide to North American birds. Part 1. Columbidae to Ploceidae. Slate Creek, Bolinas

  46. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.

  47. Robb GN, McDonald RA, Inger R, Reynolds SJ, Newton J, McGill RAR, Chamberlain DE, Harrison TJE, Bearhop S (2011) Using stable-isotope analysis as a technique for determining consumption of supplementary foods by individual birds. Condor 113:475–482

  48. Saks L, McGraw K, Hõrak P (2003) How feather colour reflects its carotenoid content. Funct Ecol 17:555–561

  49. Searcy WA, Nowicki S (2005) The evolution of communication: reliability and deception in animal signaling systems. Princeton University Press, Princeton

  50. Semmens BX, Ward EJ, Moore JW, Darimont CT (2009) Quantifying inter- and intra-population niche variability using hierarchical Bayesian stable isotope mixing models. PLoS One 4:e6187

  51. Slagsvold T, Lifjeld JT (1992) Plumage color is a condition-dependent sexual trait in male pied flycatchers. Evolution (N Y) 46:825–828

  52. Stevens M, Parraga CA, Cuthill IC, Partridge JC, Troscianko TS (2007) Using digital photography to study animal coloration. Biol J Linn Soc 90:211–237

  53. Surmacki A, Nowakowski JK (2007) Soil and preen waxes influence the expression of carotenoid-based plumage coloration. Naturwissenschaften 94:829–835

  54. Walther BA, Clayton DH (2005) Elaborate ornaments are costly to maintain: evidence for high maintenance handicaps. Behav Ecol 16:89–95

  55. Ward EJ, Semmens BX, Phillips DL, Moore JW, Bouwes N (2011) A quantitative approach to combine sources in stable isotope mixing models. Ecosphere 2:art19

  56. Watt DJ, Willoughby EJ (1999) Lesser Goldfinch (Spinus psaltria). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca

  57. Werner RA, Bruch BA, Brand WA (1999) Conflo III—an interface for high precision δ13C and δ15C analysis with an extended dynamic range. Rapid Commun Mass Spectrom 13:1237–1241

  58. Willoughby EJ (2007) Geographic variation in color, measurements, and molt of the Lesser Goldfinch in North America does not support subspecific designation. Condor 109:419–436

  59. Winker K (1998) Suggestions for measuring external characters of birds. Ornitol Neotrop 9:23–30

  60. Zahavi A (1977) The cost of honesty: further remarks on the handicap principle. J Theor Biol 67:603–605

Download references

Acknowledgments

We are grateful to landowners who generously provided access to their bird feeders, to the citizen scientists that reported bird sightings, and student volunteers that aided in fieldwork. We thank the UNR Honors Undergraduate Research Award to MFC for financial support. We appreciate useful feedback from the UNR Evol Doers and two anonymous reviewers. All research protocols were conducted under appropriate federal and state permits, and reviewed and approved by the Institutional Animal Care and Use Committee at the University of Nevada, Reno (protocol no. 2008-0383).

Author information

Correspondence to Jessi L. Brown.

Additional information

Communicated by C. Guglielmo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 76 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frincke-Craig, M., Brown, J.L., Briggs, C.W. et al. Relationships between plumage coloration, diet diversity, and winter body condition in the Lesser Goldfinch. J Ornithol 156, 143–151 (2015) doi:10.1007/s10336-014-1130-0

Download citation

Keywords

  • Body condition
  • Color
  • Diet
  • Spinus psaltria
  • Stable isotopes
  • Temporal variation