Advertisement

Journal of Ornithology

, Volume 156, Issue 1, pp 297–307 | Cite as

Low nest survival of a breeding shorebird in Bohai Bay, China

  • Pinjia Que
  • Yajing Chang
  • Luke Eberhart-Phillips
  • Yang Liu
  • Tamás Székely
  • Zhengwang Zhang
Original Article

Abstract

Nest survival plays an important role in avian demography because of its influence on both individual fitness and population growth. It is also known to vary within species due to local factors such as climate, predation, substrate, and disturbance, among others. Therefore, an understanding of the relative influence of local factors on nest survival is of critical importance for the formulation of appropriate avian conservation and management policies/programs. Over the past 50 years the Yellow Sea has lost almost 65 % of its original intertidal habitats due to land reclamation and development. There has also been a concomitant and rapid decline in the populations of Kentish plover (Charadrius alexandrinus) in East Asia, but the proximate causes of this decline are poorly understood. To gain a better understanding of this conservation issue, we investigated Kentish plover nest survival in Bohai Bay, China, using Program MARK to model the daily survival rate (DSR) of 417 nests. We found that in terms of nest survival, that for the Kentish plover populations in Bohai Bay [0.925 ± 0.004 (±95 % confidence interval)] is the lowest reported worldwide for this species. The most common cause of nest failure was related to anthropogenic disturbance. We determined that nests occupying salt crystallization habitat had the highest hatching success and that initiation date, nest age, and nest density had quadratic effects on DSR. If low nest survival persists for consecutive years, fecundity will unlikely compensate for adult mortality, resulting in dramatic population declines of plovers in Bohai Bay. We therefore recommend that the Local Authority managers responsible for local environmental management act accordingly to create protected alternative nesting habitat for plovers in this region.

Keywords

Charadrius alexandrinus Conservation Kentish plover Land reclamation Nest density Predation 

Zusammenfassung

Niedrige Überlebensrate von Nestern eines brütenden Watvogels in der Bohai-Bucht, China

Die Überlebensrate von Nestern spielt wegen ihres Einflusses auf individuelle Fitness und Populationswachstum eine wichtige Rolle für die Demographie von Vogelpopulationen. Es ist bekannt, dass die Überlebensrate von Nestern innerhalb einer Art aufgrund von Faktoren wie Klima, Prädation, Substrat und Störungen variiert. Daher ist das Einschätzen von lokalen Einflüssen auf die Überlebensrate von Nestern von zentraler Bedeutung für das Erstellen von angemessenen Vogelschutz- und Managementplänen. Das Gelbe Meer hat über die letzten 50 Jahre beinahe 65 % seines ursprünglichen Habitats im Gezeitenbereich durch Landgewinnung und Entwicklung eingebüßt. Parallel hierzu sind Populationen des Seeregenpfeifers (Charadrius alexandrinus) in Ostasien schnell zurückgegangen, wobei die unmittelbaren Gründe hierfür nur unzureichend bekannt sind. Um diese Naturschutzproblematik zu bestätigen, untersuchten wir die Überlebensrate von Nestern des Seeregenpfeifers in der Bohai-Bucht, China. Wir nutzen das Programm MARK, um die tägliche Überlebensrate (DSR) von 417 Nestern zu modellieren, und fanden heraus, dass Nester von Seeregenpfeifern, die in der Bohai-Bucht brüten, die weltweit niedrigste bekannte Überlebensrate (0.925 ± 0.004 [±95 % KI]) für diese Art aufweisen. Der häufigste Auslöser für das Scheitern eines Nestes war anthropogene Störung. Unsere Studie zeigt, dass Nester in Salzkristallisationshabitaten den höchsten Schlupferfolg aufwiesen und dass der Zeitpunkt des Nestbeginns, das Nestalter und die Nesterdichte quadratische Effekte auf DSR hatten. Sollte die niedrige Überlebensrate für mehrere aufeinanderfolgende Jahre anhalten, ist es unwahrscheinlich, dass die Fortpflanzungsrate die adulte Sterblichkeitsrate kompensiert, was zu dramatischen Bestandsrückgängen der Regenpfeifer in der Bohai-Bucht führen würde. Daher schlagen wir vor, dass Umweltmanager vor Ort entsprechend handeln und geschützte alternative Bruthabitate für die Regenpfeifer in dieser Region schaffen.

Notes

Acknowledgments

This study was supported by National Basic Research Program of China (No. 2006CB403305), United Foundation for Natural Science of National Natural Science Foundation of China and People’s Government of Guangdong Province (No. U0833005) and the open project of State Key Laboratory of Biocontrol, Sun Yat-sen University. We would especially like to thank Hongyan Yang and Weipan Lei who provided detailed advice and comments on our study. We also thank Zhiqin Ma, Zao Wang, and Mengjie Sun for field assistance.

Supplementary material

10336_2014_1126_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 51 kb)

References

  1. AlRashidi M, Kosztolanyi A, Shobrak M, Szekely T (2011) Breeding ecology of the Kentish plover, Charadrius alexandrinus, in the Farasan Islands, Saudi Arabia (Aves: Charadriiformes). Zool Middle East 53:15–24CrossRefGoogle Scholar
  2. Amano T, Szekely T, Koyama K, Amano H, Sutherland WJ (2010) A framework for monitoring the status of populations: an example from wader populations in the East Asian–Australasian flyway. Biol Conserv 143:2238–2247CrossRefGoogle Scholar
  3. Amano T, Szekely T, Koyama K, Amano H, Sutherland WJ (2012) Addendum to “A framework for monitoring the status of populations: an example from wader populations in the East Asian–Australasian flyway” Biological Conservation, 143, 2238–2247. Biol Conserv 145:278–295CrossRefGoogle Scholar
  4. Antolos M, Roby DD, Lyons DE, Anderson SK, Collis K (2006) Effects of nest density, location, and timing on breeding success of Caspian terns. Waterbirds 29:465–472CrossRefGoogle Scholar
  5. Beauchamp WD, Koford RR, Nudds TD, Clark RG, Johnson DH (1996) Long-term declines in nest success of prairie ducks. J Wildl Manag 60:247–257CrossRefGoogle Scholar
  6. Bolduc F, Guillemette M (2003) Human disturbance and nesting success of Common Eiders: interaction between visitors and gulls. Biol Conserv 110:77–83CrossRefGoogle Scholar
  7. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225PubMedCrossRefGoogle Scholar
  8. Buick A, Paton D (1989) Impact of off-road vehicles on the nesting success of Hooded plovers Charadrius rubricollis in the Coorong region of South Australia. Emu 89:159–172CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information—theoretic approach. Springer, New YorkGoogle Scholar
  10. Byrd GV, Trapp JL, Zeillemaker C (1994) Removal of introduced foxes: a case study in restoration of native birds. Trans North Am Wildl Nat Resour Conf 59:317–321Google Scholar
  11. Chase MK, Nur N, Geupel GR, Stouffer P (2005) Effects of weather and population density on reproductive success and population dynamics in a song sparrow (Melospiza melodia) population: a long-term study. Auk 122:571–592CrossRefGoogle Scholar
  12. Colwell MA, Meyer JJ, Hardy MA, Mcallister SE, Transou AN, Levalley RR, Dinsmore SJ (2011) Western Snowy plovers Charadrius alexandrinus nivosus select nesting substrates that enhance egg crypsis and improve nest survival. Ibis 153:303–311CrossRefGoogle Scholar
  13. Cooch E, White G (2006) Program MARK: a gentle introduction. Available at: http://www.phidot.org/software/mark/docs/book/
  14. Cox WA, Thompson F III, Faaborg J (2012) Landscape forest cover and edge effects on songbird nest predation vary by nest predator. Landscape Ecol 27:659–669CrossRefGoogle Scholar
  15. Delaney S, Scott DA, Dodman T, Stroud DA (2009) An atlas of wader populations in Africa and Western Eurasia. Wetlands International Wageningen, WageningenGoogle Scholar
  16. Dinsmore SJ, White GC, Knopf FL (2002) Advanced techniques for modeling avian nest survival. Ecology 83:3476–3488CrossRefGoogle Scholar
  17. Drever MC, Clark RG (2007) Spring temperature, clutch initiation date and duck nest success: a test of the mismatch hypothesis. J Anim Ecol 76:139–148PubMedCrossRefGoogle Scholar
  18. Eberhart-Phillips LJ, Colwell MA (2014). Conservation challenges of a sink: the viability of an isolated population of the Snowy plover. Bird Conserv Int 24:327–341Google Scholar
  19. Ellis JC, Good TP (2006) Nest attributes, aggression, and breeding success of gulls in single and mixed species subcolonies. Condor 108:211–219CrossRefGoogle Scholar
  20. Fletcher RJ, Koford RR, Seaman DA (2006) Critical demographic parameters for declining songbirds breeding in restored grasslands. J Wildl Manag 70:145–157CrossRefGoogle Scholar
  21. Götmark F, Andersson M (1984) Colonial breeding reduces nest predation in the Common gull (Larus canus). Anim Behav 32:485–492CrossRefGoogle Scholar
  22. Grant TA, Shaffer TL, Madden EM, Pietz PJ, Johnson D (2005) Time-specific variation in passerine nest survival: new insights into old questions. Auk 122:661–672CrossRefGoogle Scholar
  23. Haas CA (1998) Effects of prior nesting success on site fidelity and breeding dispersal: an experimental approach. Auk 115:929–936CrossRefGoogle Scholar
  24. Hardy MA, Colwell MA (2012) Factors Influencing Snowy plover nest survival on ocean-fronting beaches in coastal Northern California. Waterbirds 35:503–511CrossRefGoogle Scholar
  25. Hong S, Higashi S (2008) Nesting site preference and hatching success of the Kentish plover (Charadrius alexandrinus) in the Nakdong Estuary, Busan, Republic of Korea. J Ecol Field Biol 31:201–206CrossRefGoogle Scholar
  26. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108PubMedCrossRefGoogle Scholar
  27. Kupper C, Augustin J, Kosztolanyi A, Burke T, Figuerola J, Szekely T (2009) Kentish versus Snowy plover: phenotypic and genetic analyses of Charadrius alexandrinus reveal divergence of Eurasian and American subspecies. Auk 126:839–852CrossRefGoogle Scholar
  28. Lei WP (2010) Studies on migration and Habitat use of waterbirds at typical wetlands around Bohai Bay. MSc thesis, Beijing Normal University, Beijing, ChinaGoogle Scholar
  29. Liu WT, Chen PH (2002) Hatching success and causes of hatching failure of Kentish plover Charadrius alexandrinus in Changhua Coastal Industrial Park. Tunghai Sci 4:85–101Google Scholar
  30. Mabee TJ (1997) Using eggshell evidence to determine nest fate of shorebirds. Wilson Bull 109:307–313Google Scholar
  31. Marchant J, Prater T (1986) Shorebirds: an identification guide to the waders of the world. A&C Black, LondonGoogle Scholar
  32. Martin TE (1988) On the advantage of being different: nest predation and the coexistence of bird species. Proc Natl Acad Sci USA 85:2196–2199PubMedCentralPubMedCrossRefGoogle Scholar
  33. Maxson SJ, Fieberg JR, Riggs MR (2007) Black tern nest habitat selection and factors affecting nest success in northwestern Minnesota. Waterbirds 30:1–9CrossRefGoogle Scholar
  34. Minias P (2014) Evolution of within-colony distribution patterns of birds in response to habitat structure. Behav Ecol Sociobiol 68:851–859PubMedCentralPubMedCrossRefGoogle Scholar
  35. Montalvo T, Figuerola J (2006) The distribution and conservation of the Kentish plover Charadrius alexandrinus in Catalonia. Revista Catalana d’Ornitologia 22:1–8Google Scholar
  36. Murray NJ, Clemens RS, Phinn SR, Possingham HP, Fuller RA (2014) Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front Ecol Environ 12:267–272CrossRefGoogle Scholar
  37. Newmark WD, Stanley TR (2011) Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proc Natl Acad Sci USA 108:11488–11493PubMedCentralPubMedCrossRefGoogle Scholar
  38. Nol E, Brooks RJ (1982) Effects of predator exclosures on nesting success of Killdeer. J Field Ornithol 53:263–268Google Scholar
  39. Patrick AM (2013) Semi-colonial nesting in the Snowy plover. MSc thesis, Humboldt State University, Arcata, CaliforniaGoogle Scholar
  40. Pienkowski MW (1984) Breeding biology and population dynamics of Ringed plovers Charadrius hiaticula in Britain and Greenland: nest-predation as a possible factor limiting distribution and timing of breeding. J Zool 202:83–114CrossRefGoogle Scholar
  41. Pieron MR, Rohwer FC (2010) Effects of large-scale predator reduction on nest success of upland nesting ducks. J Wildl Manag 74:124–132CrossRefGoogle Scholar
  42. Rimmer DW, Deblinger RD (1990) Use of predator exclosures to protect Piping plover nests. J Field Ornithol 61:217–223Google Scholar
  43. Ringelman KM, Eadie JM, Ackerman JT (2014) Adaptive nest clustering and density-dependent nest survival in dabbling ducks. Oikos 123:239–247CrossRefGoogle Scholar
  44. Robinson SK (1985) Coloniality in the Yellow-rumped Cacique as a defense against nest predators. Auk 102:506–519Google Scholar
  45. Rodríguez C, Bustamante J (2003) The effect of weather on Lesser kestrel breeding success: can climate change explain historical population declines? J Anim Ecol 72:793–810CrossRefGoogle Scholar
  46. Ronka A, Koivula K, Ojanen M, Pakanen V-M, PohjoismÄKi M, Rannikko K, Rauhala P (2006) Increased nest predation in a declining and threatened Temminck’s stint Calidris temminckii population. Ibis 148:55–65CrossRefGoogle Scholar
  47. Sæther B-E, Bakke Ø (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653CrossRefGoogle Scholar
  48. Schulz R, Stock M (1993) Kentish plovers and tourists: competitors on sandy coasts. Wader Study Group Bull 68:83–91Google Scholar
  49. Smith PA, Wilson S (2010) Intraseasonal patterns in shorebird nest survival are related to nest age and defence behaviour. Oecologia 163:613–624PubMedCrossRefGoogle Scholar
  50. Smith PA, Gilchrist HG, Smith JNM (2007) Effects of nest habitat, food, and parental behavior on shorebird nest success. Condor 109:15–31CrossRefGoogle Scholar
  51. Stephens SE, Rotella JJ, Lindberg MS, Taper ML, Ringelman JK (2005) Duck nest survival in the Missouri Coteau of North Dakota: landscape effects at multiple spatial scales. Ecol Appl 15:2137–2149CrossRefGoogle Scholar
  52. Sugden LG, Beyersbergen GW (1986) Effect of density and concealment on American crow predation of simulated duck nests. J Wildl Manag 50:9–14CrossRefGoogle Scholar
  53. Székely T (1992) Reproduction of Kentish plover Charadrius alexandrinus in grasslands and fish-ponds: the habitat mal-assessment hypothesis. Aquila 99:59–68Google Scholar
  54. Szekely T, Karsai I, Williams TD (1994) Determination of clutch-size in the Kentish Plover Charadrius alexandrinus. Ibis 136:341–348CrossRefGoogle Scholar
  55. Székely T, Kosztolányi A, Küpper C (2008) Practical guide for investigating breeding ecology of Kentish plover Charadrius alexandrinus. University of Bath, BathGoogle Scholar
  56. Szentirmai I, Szekely T (2004) Diurnal variation in nest material use by the Kentish plover Charadrius alexandrinus. Ibis 146:535–537CrossRefGoogle Scholar
  57. Tapper SC, Potts GR, Brockless MH (1996) The effect of an experimental reduction in predation pressure on the breeding success and population density of grey partridges Perdix perdix. J Appl Ecol 33:965–978CrossRefGoogle Scholar
  58. Tinbergen N, Impekoven M, Franck D (1967) An experiment on spacing-out as a defence against predation. Behaviour 28:307–321CrossRefGoogle Scholar
  59. US Fish and Wildlife Service (USFWS) (1993) Endangered and threatened wildlife and plants; determination of threatened status for the Pacific coast population of the western Snowy plover; final rule. Fed Regist 58:12864–12874Google Scholar
  60. Varela SAM, Danchin E, Wagner RH (2007) Does predation select for or against avian coloniality? A comparative analysis. J Evol Biol 20:1490–1503PubMedCrossRefGoogle Scholar
  61. Warriner JS, Warriner JC, Page GW, Stenzel LE (1986) Mating system and reproductive success of a small population of polygamous Snowy plovers. Wilson Bull 98:15–37Google Scholar
  62. Wilson S, Martin K, Hannon SJ (2007) Nest survival patterns in Willow Ptarmigan: influence of time, nesting stage, and female characteristics. Condor 109:377–388CrossRefGoogle Scholar
  63. Yang HY, Chen B, Barter M, Piersma T, Zhou CF, Li FS, Zhang ZW (2011) Impacts of tidal land reclamation in Bohai Bay, China: ongoing losses of critical Yellow Sea waterbird staging and wintering sites. Bird Conserv Int 21:241–259CrossRefGoogle Scholar
  64. Yasue M, Dearden P (2006) The potential impact of tourism development on habitat availability and productivity of Malaysian plovers Charadrius peronii. J Appl Ecol 43:978–989CrossRefGoogle Scholar
  65. Yu Y, Pei X (1996) Studies on the breeding ecology of Charadrius alexandrinus dealbatus. In: Study on Chinese ornithology. China Forestry Publishing House, Beijing, pp 305–308Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Pinjia Que
    • 1
  • Yajing Chang
    • 1
  • Luke Eberhart-Phillips
    • 2
  • Yang Liu
    • 3
  • Tamás Székely
    • 4
  • Zhengwang Zhang
    • 1
  1. 1.Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life SciencesBeijing Normal UniversityBeijingChina
  2. 2.Department of Animal BehaviourBielefeld UniversityBielefeldGermany
  3. 3.State Key Laboratory of Biocontrol and College of Ecology and EvolutionSun Yat-sen UniversityGuangzhouChina
  4. 4.Department of Biology and BiochemistryUniversity of BathBathUK

Personalised recommendations