Journal of Ornithology

, Volume 156, Issue 1, pp 257–262 | Cite as

Three stages of post mortem opisthotonus uniquely captured in the dinosaur Sinosauropteryx

  • Theagarten Lingham-Soliar
Original Article


The dinosaur Sinosauropteryx, thought by some to have given rise to birds, is from the Chinese Jehol biota. A specimen of the dinosaur uniquely shows the opisthotonic process (sharp upward recurvatures of neck and tail) occurring in three stages in the tail, evident by a trail of associated material. This evidence, together with the rufous colour of the specimen, is particularly pertinent in the light of a recent hypothesis that the Jehol biota included victims of volcanic eruptions (as, e.g., skeletons at Pompeii and Herculaneum), which had perished from pyroclastic surges and scorching temperatures.


Sinosauropteryx Three-stage opisthotonus Pyroclastic surges Ultra-heat 


Drei Stadien von postmortalem Opisthotonus, einzigartig festgehalten beim Dinosaurier Sinosauropteryx

Der Dinosaurier Sinosauropteryx, der von manchen als Ursprung der Vögel betrachtet wird, entstammt der chinesischen Jehol-Gruppe. Ein Fossil dieser Dinosaurierart verdeutlicht auf einzigartige Weise den opisthotonischen Prozess (ein heftiges Zurückbiegen von Hals und Schwanz), der sich in drei Stadien am Schwanz zeigt, belegt durch Spuren im dazugehörigen Material. In Kombination mit der rötlichen Färbung des Exemplars erhält dieser Fund eine besondere Relevanz vor dem Hintergrund einer neueren Hypothese, die besagt, dass die Jehol-Gruppe auch Opfer von Vulkanausbrüchen umfasst (vergleichbar zum Beispiel mit Skeletten aus Pompeji und Herculaneum), welche durch pyroklastische Ströme und sengende Temperaturen umkamen.


  1. Behrensmeyer AK, Damuth JD, DiMichelle WA, Potts R, Sues H-D, Wing SL (1992) Terrestrial ecosystems through time. University of Chicago Press, ChicagoGoogle Scholar
  2. Faux CM, Padian K (2007) The opisthotonic posture of vertebrate skeletons: postmortem contraction or death throes? Paleobiology 33(2):201–226CrossRefGoogle Scholar
  3. Fürsich FT, Sha J, Jiang B, Pan Y (2007) High resolution palaeoecological and taphonomic analysis of Early Cretaceous lake biota, western Liaoning (NE-China). Palaeogeogr Palaeoclimatol Palaeoecol 253:434–457CrossRefGoogle Scholar
  4. Jiang B, Harlow GE, Wohletz K, Zhou Z, Meng J (2014) New evidence suggests pyroclastic flows are responsible for the remarkable preservation of the Jehol biota. Nat Commun 5:3151. doi: 10.1038/ncomms4151
  5. Lingham-Soliar T (2003) The dinosaurian origin of feathers: perspectives from dolphin (Cetacea) collagen fibres. Naturwissenschaften 90:563–567PubMedCrossRefGoogle Scholar
  6. Lingham-Soliar T (2011) The evolution of the feather: Sinosauropteryx, a colourful tail. J Ornithol 152:567–577Google Scholar
  7. Lingham-Soliar T (2012) The evolution of the feather: Sinosauropteryx, life, death and preservation of an alleged feathered dinosaur. J Ornithol 153:699–711CrossRefGoogle Scholar
  8. Lingham-Soliar T (2013) The evolution of the feather: scales on the tail of Sinosauropteryx and an interpretation of the dinosaur’s opisthotonic posture. J Ornithol 154:455–463CrossRefGoogle Scholar
  9. Lingham-Soliar T, Glab J (2010) Dehydration: a mechanism for the preservation of fine detail in fossilised soft tissue of ancient terrestrial animals. Palaeogeogr Palaeoclimatol Palaeoecol 291:481–487. doi: 10.1016/j.palaeo.2010.03.019 CrossRefGoogle Scholar
  10. Lingham-Soliar T, Feduccia A, Wang X (2007) A new Chinese specimen indicates that ‘protofeathers’ in the Early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres. Proc R Soc Lond B 274:1823–1829. doi: 10.1098/rspb.2007.0352 CrossRefGoogle Scholar
  11. Mastrolorenzo G, Petrone PP, Pagano M, Incoronato A, Baxter PJ, Canzanella A, Fattore L (2001) Herculaneum victims of Vesuvius in AD 79. Nature 410:769–770PubMedCrossRefGoogle Scholar
  12. Mastrolorenzo G, Petrone P, Pappalardo L, Guarino FM (2010) Lethal thermal impact at periphery of pyroclastic surges: evidences at Pompeii. PLoS ONE 5(6):e11127. doi: 10.1371/journal.pone.0011127 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Mellink E, Martin PS (2001) Mortality of cattle on a desert range: paleobiological implications. J Arid Environ 29:671–675Google Scholar
  14. Monroe JS, Wicander R (2009) The changing earth: exploring geology and evolution. Brooks/Cole, BelmontGoogle Scholar
  15. Reisdorf AG, Wuttke M (2012) Re-evaluating Moodie’s opisthotonic posture hypothesis in fossil vertebrates part I: reptiles—the taphonomy of the bipedal dinosaurs Compsognathus longipesand Juravenator starki from the Solnhofen archipelago (Jurassic, Germany). Palaeobiol Palaeoenviron 92:119–168. doi: 10.1007/s12549-011-0068-y CrossRefGoogle Scholar
  16. Wegweiser M (2004) Paleoenvironmental and diagenetic constraints on the fossilization of soft tissues in Cretaceous dinosaurs: exceptional preservation and processes in northwestern Wyoming. Rocky Mountain and Cordilleran Joint Meeting, May 2004Google Scholar
  17. Zhang F, Kearns SL, Orr PJ, Benton MJ, Zhou Z, Johnson D, Xu X, Wang X (2010) Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463:1075–1078. doi: 10.1038/nature08740 PubMedCrossRefGoogle Scholar
  18. Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421:807–814PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  1. 1.Nelson Mandela Metropolitan UniversityPort ElizabethSouth Africa

Personalised recommendations