Journal of Ornithology

, Volume 155, Issue 3, pp 755–765 | Cite as

Evolution within the nuthatches (Sittidae: Aves, Passeriformes): molecular phylogeny, biogeography, and ecological perspectives

  • Eric PasquetEmail author
  • F. Keith Barker
  • Jochen Martens
  • Annie Tillier
  • Corinne Cruaud
  • Alice Cibois
Original Article


A comprehensive phylogeny of the nuthatches, genus Sitta, is proposed based on 21 of the 24–28 species recognized in the genus and three genes, two mitochondrial (cytochrome b and cytochrome oxidase subunit I) and one nuclear (RAG1). This phylogeny is well resolved and reveals several major clades within nuthatches. Przevalski’s Nuthatch Sitta przewalskii is sister to all other nuthatches, without any close relatives in our sampling. The larger species S. carolinensis and S. magna, despite their disjunct distributions, are sister taxa at the base of the tree. The next clade comprises the europaea group, which is sister to the two rock nuthatches (S. tephronota and S. neumayer), and to the Beautiful Nuthatch Sitta formosa of southeast Asia, although with less support. All these species use plastering to reduce the entrance of their hole or to build their nest with mud on rocks, but their ecologies are not as specialized as those of the rock nuthatches. The Asian small species (represented by S. azurea, S. frontalis and S. oenochlamys) form a well-supported clade. We confirm a single origin for the canadensis group that also includes the Yunnan nuthatch Sitta yunnanensis. Both are sister group to the two sibling species of North America (S. pygmaea and S. pusilla); all these species dig their own nest in trunks and are closely associated with coniferous forest. A biogeographical analysis supports the hypothesis of Asia being the center of diversification for nuthatches, with several independent dispersal events to North America.


Mitochondrial and nuclear genes Phylogenetic relationships Nesting behavior Biogeographical analysis 


Evolution innerhalb der Kleiber (Sittidae: Aves, Passeriformes): molekulare Phylogenie, Biogeographie und ökologische Gegebenheiten

Auf der Grundlage von 21 der 24–28 derzeit anerkannten Kleiberaten schlagen wir eine umfassende Phylogenie der Gattung Sitta vor. Zwei Mitochondriengene (Cytochrom-b, COI) und ein Kerngen (RAG1) wurden herangezogen; die Phylogenie ist gut aufgelöst und weist mehrere größere Äste innerhalb der Kleiberverwandtschaft aus. Der chinesische Przhewalski-Kleiber (S. przhewalskii) ist Schwesterart zu allen anderen Kleibern und weist innerhalb der einbezogenen Taxa keine nahen Verwandten aus. Die größeren Arten S. carolinensis und S. magna sind trotz ihrer weit disjunkten Verbreitung in Nordamerika und Südostasien Geschwisterarten und stehen als nächster Ast nahe der Basis des genetischen Baumes. Der weitere Baum ist in zwei Hauptäste gegliedert. Einer umfasst die europaea-Artengruppe, in die auch der Himalayakleiber (S. himalayana) einbezogen ist, zusätzlich Felsenkleiber (S. tephronota), Klippenkleiber (S. neumayer) und der südostasiatische Prachtkleiber (S. formosa). Alle diese Arten verkleben die Höhleneingänge oder bauen die Nester gänzlich aus Lehm an Felsen; das Nestbauverhalten von Felsen- und Klippenkleiber ist am höchsten spezialisiert. Die asiatischen kleinen Arten, die hier von S. azurea, S. frontalis und S. oenochlamys repräsentiert sind, stellen einen Teil das anderen gut unterstützten phylogenetischen Hauptastes dar. Ihm gegenüber steht ein vielfältig strukturierter Ast mit acht Arten, die in oftmals winzigen Reliktarealen in der Westpaläarktis leben (S. whiteheadi, S. ledenti, S. krueperi), teils in China (S. yunnanensis, S. villosa) oder in Nordamerika (S. pusilla, S. pygmaea, S. canadensis). Wir bestätigen einen gemeinsamen Ursprung der canadensis-Gruppe, die auch den Yunnankleiber (S. yunnanensis) umfasst. Der gesamte Ast ist Schwestergruppe zu den kleinen nordamerikanischen Geschwisterarten S. pygmaea und S. pusilla. Alle diese Arten hacken ihre Nesthöhle eigenständig in Baumstämme und sind eng an Nadelbäume gebunden. Eine biogeografische Analyse unterstützt die Hypothese, dass Asien das Diversifikationszentrum der Kleiber darstellt. Von dort brachten mehrere voneinander unabhängige Ausbreitungsereignisse Gattungsvertreter nach Nordamerika.



J. Martens thanks Feldbausch Stiftung and Wagner Stiftung, both at Fachbereich Biologie of Mainz University, and Research commission of Deutsche Ornithologen-Gesellschaft (East Asia Grants to J. Martens, A. Gebauer and M. Kaiser) for travel grants. J. Martens is most thankful to Sun YueHua for his generous hospitality especially during field trips in numerous provinces of China and in the Lianhua Shan Nature Reserve. A. Cibois and E. Pasquet thank Han Lian Xian for his kind help during field work in Yunnan. A. Cibois and E. Pasquet thank the Service de Systématique Moléculaire in MNHN, Paris for help during laboratory work. Two anonymous reviewers provided helpful comments on the manuscript. We also thank all colleagues and institutions who provided samples: M. Baloutch (Iran); Zhao Zhongying (North Korea); Joel Cracraft and Paul Sweet, AMNH (American Museum of Natural History), New York, USA; John Bates and David Willard, FMNH (Field Museum of Natural History), Chicago, USA; Frederick Sheldon and Diana Reynolds, LSUMNS (Louisiana State University Museum of Natural Science), Baton Rouge, USA; Robert Prys-Jones and Mark Adams, NHM (Natural History Museum), Tring, UK; Sharon Birks (University of Washington, Burke Museum), Washington, USA.

Supplementary material

10336_2014_1063_MOESM1_ESM.pdf (145 kb)
Fig. S1 Bayesian chronogram for the Sittidae inferred using BEAST and a rate-based calibration. Time scale in Ma. Error bars represent 95 % HPD intervals (PDF 145 kb)
10336_2014_1063_MOESM2_ESM.doc (61 kb)
Table S1 List of samples and Genbank accession numbers (DOC 61 kb)


  1. Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Syst Biol 20:255–266Google Scholar
  2. Ali S, Ripley SD (1973) Handbook of the birds of India and Pakistan, vol 9. Oxford University Press, OxfordGoogle Scholar
  3. Allende LM, Rubio I, Al E (2001) The old world sparrows (genus Passer) phylogeography and their relative abundance of nuclear mtDNA pseudogenes. J Mol Evol 53:144–154PubMedCrossRefGoogle Scholar
  4. Barker FK (2004) Monophyly and relationships of wrens (Aves: Troglodytidae): a congruence analysis of heterogeneous mitochondrial and nuclear DNA sequence data. Mol Phylogenet Evol 31:486–504PubMedCrossRefGoogle Scholar
  5. Barker FK, Cibois A, Schikler P, Feinstein J, Cracraft J (2004) Phylogeny and diversification of the largest avian radiation. Proc Natl Acad Sci USA 101:11040–11045PubMedCentralPubMedCrossRefGoogle Scholar
  6. Birdlife International (2001) Threatened birds of Asia: the birdlife international red data book. BirdLife International, CambridgeGoogle Scholar
  7. Brown WL, Wilson EO (1956) Character displacement. Syst Zool 5:49–65CrossRefGoogle Scholar
  8. Buerki S, Forest F, Alvarez N, Nylander JAA, Arrigo N, Sanmartín I (2011) An evaluation of new parsimony-based versus parametric inference methods in biogeography: a case study using the globally distributed plant family Sapindaceae. J Biogeogr 38:531–550CrossRefGoogle Scholar
  9. Cibois A, Thibault J-C, Pasquet E (2004) Biogeography of eastern Polynesian monarchs (Pomarea): an endemic genus close to extinction. Condor 106:837–851CrossRefGoogle Scholar
  10. Dickinson EC (2003) The Howard and Moore complete checklist of the birds of the world, 3rd edn. Christopher Helm, LondonGoogle Scholar
  11. Dickinson EC (2006) Systematic notes on Asian birds. 62. A preliminary review of the Sittidae. Zool Med Leiden 14:225–240Google Scholar
  12. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCentralPubMedCrossRefGoogle Scholar
  13. Drummond A, Ho S, Phillips M, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88Google Scholar
  14. Duyck BE, McNair DB, Nicholson CP (1991) Dirt-storing behavior by White-breasted Nuthatches. Wilson Bull 103:308–309Google Scholar
  15. Eckenwalder JE (2009) Conifers of the world. Timber, PortlandGoogle Scholar
  16. Flower BP, Kennet JP (1994) The middle Miocene climatic transition: east Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol 108:537–555CrossRefGoogle Scholar
  17. Fok KW, Wade CM, Parkin DT (2002) Inferring the phylogeny of disjunct populations of the azure-winged magpie Cyanopica cyanus from mitochondrial control region sequences. Proc R Soc Lond B 269:1671–1679CrossRefGoogle Scholar
  18. Gao W (1978) On the breeding behaviour and feedings habits of the Black-headed Nuthatch. Acta Zool Sin 24:260–268Google Scholar
  19. Gatter W, Mattes H (1979) Zur Populationsgrösse und Ökologie des neuentdeckten Kabylenkleibers Sitta ledanti Vielliard 1976. J Ornithol 120:390–405CrossRefGoogle Scholar
  20. Gill F, Donsker D (eds) (2013) IOC world bird list (v 3.3). Available at Accessed 10 May 2013
  21. Groth JG, Barrowclough GF (1999) Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol Phylogenet Evol 12:115–123PubMedCrossRefGoogle Scholar
  22. Grubb TC Jr, Pravosudov VV (2008) White-breasted Nuthatch (Sitta carolinensis). In: Poole A (ed) The birds of North America online, Ithaca: Cornell Lab of Ornithology; Retrieved from the birds of North America online: doi: 10.2173/bna.54
  23. Harrap S (2008) Family Sittidae (nuthatches). In: del Hoyo J, Elliot A, Christie A (eds) Penduline-tits to Shrikes. Handbook of the birds of the world, vol 13. Lynx, Barcelona, pp 102–145 Google Scholar
  24. Harrap S, Quinn D (1996) Tits, nuthatches and treecreepers. Christopher Helm, LondonGoogle Scholar
  25. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. Public Library Sci Biol 2:1657–1663Google Scholar
  26. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192CrossRefGoogle Scholar
  27. Ho SYW (2007) Calibrating molecular estimates of substitution rates and divergence times in birds. J Avian Biol 38:409–414CrossRefGoogle Scholar
  28. Hung C-M, Drovetski SV, Zink RM (2012) Multilocus coalescence analyses support a mtDNA based phylogeographic history for a widespead Palearctic passerine bird, Sitta Europaea. Evolution 66(9):2850–2864 Google Scholar
  29. Inskipp T, Lindsey N, Duckworth W (1996) An annotated checklist of the birds of the oriental region oriental bird club. Oriental Bird Club, LondonGoogle Scholar
  30. Johansson US, Fjeldså J, Bowie RCK (2008) Phylogenetic relationships within Passerida (Aves: Passeriformes): a review and a new molecular phylogeny based on three nuclear intron markers. Mol Phylogenet Evol 48:858–876PubMedCrossRefGoogle Scholar
  31. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefGoogle Scholar
  32. Klicka J, Zink RM (1997) The importance of recent ice ages in speciation: a failed paradigm. Science 277:1666–1669CrossRefGoogle Scholar
  33. Knoop V, Müller K (2009) Raten und Zeiten. In: Gene und Stammbäume. Spektrum  Akademischer Verlag, Heidelberg, pp 245–275. ISBN 978-3-8274-1983-5Google Scholar
  34. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200PubMedCentralPubMedCrossRefGoogle Scholar
  35. Löhrl H (1958) Das verhalten des kleibers (Sitta europaea caesia Wolf). Z Tierpsychol 15:191–252CrossRefGoogle Scholar
  36. Löhrl H (1988) Etho-ökologische Untersuchungen an verschiedenen Kleiberarten (Sittidae). Eine vergleichende Zusammenstellung. Bonner Zoologische Monographien, Nr 26, Zoologisches Forschungsinstitut und Museum Alexander KoenigGoogle Scholar
  37. Lovette IJ (2004) Mitochondrial dating and mixed support for the “2 % rule” in birds. Auk 121:1–6Google Scholar
  38. Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75.
  39. Manegold A (2008) Earliest fossil record of the Certhioidea (treecreepers and allies) from the early Miocene of Germany. J Ornithol 149:223–228CrossRefGoogle Scholar
  40. Martens J, Tietze DT, Päckert M (2011) Phylogeny, biodiversity, and species limits of passerine birds in the Sino-Himalayan region––a critical review. Ornithol Monogr 70:64–94CrossRefGoogle Scholar
  41. Martin K, Aitken KEH, Wiebe KL (2004) Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. Condor 106:5–19CrossRefGoogle Scholar
  42. Matthysen E (1998) The nuthatches. T & A Poyser, LondonGoogle Scholar
  43. Mayr A, Short LL (1970) Species taxa of North American birds. Publications of the Nuttall Ornithological Club. No 9Google Scholar
  44. McComb WC, Lindenmayer D (1999) Dying, dead, and down trees. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems, Chapter 10. Cambridge University Press, CambridgeGoogle Scholar
  45. Nilsson SG (1984) The evolution of nest-site selection among hole-nesting birds: the importance of nest predation and competition. Ornis Scand 15:167–175CrossRefGoogle Scholar
  46. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, SwedenGoogle Scholar
  47. Pasquet E (1998) Phylogeny of the nuthatches of the Sitta canadensis group and its evolutionary and biogeographic implications. Ibis 140:150–156CrossRefGoogle Scholar
  48. Phillips A, Marshall J, Monsson G (1964) The birds of Arizona. University of Arizona, TucsonGoogle Scholar
  49. Rambaut A, Drummond AJ (2007) TRACER, version 1.4. Computer program and documentation distributed by the author.
  50. Rasmussen PC, Anderton JC (2005) Birds of South Asia: the Ripley guide. Lynx, BarcelonaGoogle Scholar
  51. Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 57:4–14PubMedCrossRefGoogle Scholar
  52. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  53. Smit JT, Zeegers T, Van Den Heuvel E, Roels B (2007) Unidentified nuthatch in Siberian Altay in July 2006. Dutch Bird 29:162Google Scholar
  54. Spellman GM, Klicka J (2007) Phylogeography of the White-breasted Nuthatch (Sitta carolinensis): diversification in North American pine and oak woodlands. Mol Ecol 16:1729–1740PubMedCrossRefGoogle Scholar
  55. Stadler T (2009) On incomplete sampling under birth–death models and connections to the sampling-based coalescent. J Theor Biol 261:58–66PubMedCrossRefGoogle Scholar
  56. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771PubMedCrossRefGoogle Scholar
  57. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  58. Thibault J-C, Prodon R, Villard P, Seguin JF (2006) Habitat requirements and foraging behaviour of the Corsican nuthatch Sitta whiteheadi. J Avian Biol 37:477–486CrossRefGoogle Scholar
  59. Vaurie C (1957) Systematic notes on palearctic birds. No. 29. the Subfamilies Tichodromadinae and Sittinae. Amer Mus Novit 1854:1–26Google Scholar
  60. Vielliard J (1978) Le Djebel Babor et sa Sittelle, Sitta ledanti Vielliard 1976. Alauda 1:1–42Google Scholar
  61. Villard P, Thibault J-C (2001) Données sur les nids, la croissance des poussins et les soins parentaux chez la Sittelle corse Sitta whiteheadi. Alauda 69:465–474Google Scholar
  62. Walström VW, Klicka J, Spellman GM (2012) Speciation in the White-breasted Nuthatch (Sitta carolinensis): a multilocus perspective. Mol Ecol 21:907–920PubMedCrossRefGoogle Scholar
  63. Weir JT, Schluter D (2008) Calibrating the avian molecular clock. Mol Ecol 17:2321–2328PubMedCrossRefGoogle Scholar
  64. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693PubMedCrossRefGoogle Scholar
  65. Zink RM, Drovetski SV, Rohwer R (2006) Selective neutrality of mitochondrial ND2 sequences, phylogeography and species limits in Sitta europaea. Mol Phylogenet Evol 40:679–686PubMedCrossRefGoogle Scholar
  66. Zuccon D, Cibois A, Pasquet E, Ericson PGP (2006) Nuclear and mitochondrial sequence data reveal the major lineages of starlings, mynas and related taxa. Mol Phylogenet Evol 41:333–344PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Eric Pasquet
    • 1
    • 4
    Email author
  • F. Keith Barker
    • 2
  • Jochen Martens
    • 3
  • Annie Tillier
    • 4
  • Corinne Cruaud
    • 5
  • Alice Cibois
    • 6
  1. 1.UMR7205 CNRS « OMSI », Muséum National d’Histoire NaturelleParis Cedex 05France
  2. 2.Department of Ecology, Evolution and Behavior and Bell Museum of Natural HistoryUniversity of MinnesotaSt. PaulUSA
  3. 3.Institut für ZoologieMainzGermany
  4. 4.UMS2700 CNRS « OMSI », Muséum National D’Histoire NaturelleParis Cedex 05France
  5. 5.Institut de Génomique, CEAÉvry CedexFrance
  6. 6.Department of Mammalogy and OrnithologyNatural History Museum of GenevaGeneva 6Switzerland

Personalised recommendations