Advertisement

Journal of Ornithology

, Volume 155, Issue 3, pp 819–823 | Cite as

Fault bars and bacterial infection

  • Roger JovaniEmail author
  • Tomás Montalvo
  • Sara Sabaté
Short Note

Abstract

Fault bars are conspicuous malformations on bird feathers that are produced during feather growth. The causes of fault bars are poorly understood. In our study, we used the presence of Campylobacter jejuni infection in 302 urban feral pigeons (Columba livia) as a proxy of physiological stress and correlated this stress with fault bar abundance. The overall prevalence of Campylobacter infection in these birds was 24.5 %. Bacterial infection was equally prevalent in young birds and adults, but males showed a slightly higher prevalence than females. Fault bars were more abundant in young birds than in adults, particularly among young males. Pigeons with Campylobacter infection had more fault bars than uninfected birds. These results suggest that the physiological state of the individual bird could be as important as external stressors in determining the occurrence of fault bars and that parasites may play a role in fault bar formation.

Keywords

Bacteria Feather Physiology Stress bars Stress marks 

Zusammenfassung

Hungerstreifen und bakterielle Infektionen

Hungerstreifen (fault bars) sind markante Missbildungen in Vogelfedern, die während des Federwachstums entstehen und deren Ursachen bislang noch nicht ganz verstanden werden. In dieser Untersuchung benutzten wir akute Campylobacter jejuni-Infektionen bei in Städten verwilderten Felsentauben (Columba livia) als Anzeiger für physiologischen Stress und korrelierten die Infektionen mit dem Vorhandensein von Hungerstreifen. Insgesamt fanden wir eine Verbreitung der Bakterien von 24,5 %. Die Infektionen kamen bei Jung- und Altvögeln gleich häufig vor, allerdings bei den Männchen etwas häufiger als bei den Weibchen. Hungerstreifen traten bei Jungvögeln häufiger auf als bei Adulten, vor allem bei jungen Männchen, und Tauben mit Campylobacter-Infektion zeigten mehr Hungerstreifen als nicht infizierte Vögel. Diese Ergebnisse legen die Vermutung nahe, dass für das Verständnis des Auftretens von Hungerstreifen der physiologische Status der Vögel ebenso wichtig ist wie externe Stress-Faktoren. Darüber hinaus sieht es so aus, als könnten Parasiten bei der Bildung von Hungerstreifen eine Rolle spielen.

Notes

Acknowledgments

We are grateful to the Colomba Control Company for their support in the sampling of pigeons. Víctor Peracho, Mª Dolors Ferrer, and Mercè de Simón are thanked for their support and collaboration in this study. RJ is supported by a Ramón y Cajal research contract (RYC-2009-03967) from the Ministerio de Ciencia e Innovación.

References

  1. Bortolotti GR, Dawson RD, Murza GL (2002) Stress during feather development predicts fitness potential. J Anim Ecol 71:333–342CrossRefGoogle Scholar
  2. Bortolotti GR, Marchant T, Blas J, Cabezas S (2009) Tracking stress: localisation, deposition and stability of corticosterone in feathers. J Exp Biol 212:1477–1482PubMedCrossRefGoogle Scholar
  3. Bull SA, Thomas A, Humphrey T, Ellis-Iversen J, Cook AJ, Lovell R, Jorgensen F (2008) Flock health indicators and Campylobacter spp. in commercial housed broilers reared in Great Britain. Appl Environ Microbiol 74:5408–5413PubMedCentralPubMedCrossRefGoogle Scholar
  4. Cogan TA, Thomas AO, Rees LE, Taylor AH, Jepson MA, Williams PH, Ketley J, Humphrey TJ (2007) Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 56:1060–1065PubMedCentralPubMedCrossRefGoogle Scholar
  5. Freed LA, Cann RL, Goff ML, Kuntz WA, Bodner GR (2005) Increase in avian malaria at upper elevation in Hawaii. Condor 107:753–764CrossRefGoogle Scholar
  6. Freed LA, Medeiros MC, Bodner GR (2008) Explosive increase in ectoparasites in Hawaiian forest birds. J Parasitol 94:1009–1021PubMedCrossRefGoogle Scholar
  7. International Organization for Standardization (ISO) (2006) Norm ISO 10272-1:2006. Microbiology of food and animal feeding stuffs––horizontal method for detection and enumeration of Campylobacter spp.: Part 1: detection method. ISO Secretariat, GenevaGoogle Scholar
  8. Jovani R, Blas J (2004) Adaptive allocation of stress-induced deformities on bird feathers. J Evol Biol 17:294–301PubMedCrossRefGoogle Scholar
  9. Jovani R, Tella JL (2004) Age-related environmental sensitivity and weather mediated nestling mortality in white storks Ciconia ciconia. Ecography 27:611–618CrossRefGoogle Scholar
  10. Jovani R, Diaz-Real J (2012) Fault bars timing and duration: the power of studying feather fault bars and growth bands together. J Avian Biol 43:97–101CrossRefGoogle Scholar
  11. Kapperud G, Rosef O (1983) Avian wildlife reservoir of Campylobacter fetus subsp jejuni, Yersinia spp., and Salmonella spp. in Norway. Appl Env Microbiol 45:375–380Google Scholar
  12. King JR, Murphy ME (1984) Fault bars in the feathers of white-crowned sparrows: dietary deficiency or stress of captivity and handling? Auk 101:168–169Google Scholar
  13. Møller AP (1989) Viability costs of male tail ornaments in a swallow. Nature 339:132–135CrossRefGoogle Scholar
  14. Møller AP, Kimball RT, Erritzoe J (1996) Sexual ornamentation, condition, and immune defence in the house sparrow Passer domesticus. Behav Ecol Sociobiol 39:317–322CrossRefGoogle Scholar
  15. Moore JE, Corcoran D, Dooley JSG, Fanning S, Lucey B, Matsuda M, McDowell DA, Megraud F, Millar BC, O’Mahony R, O’Riordan L, O’Rourke M, Rao JR, Rooney PJ, Sails A, Whyte P (2005) Campylobacter. Vet Res 36:351–382PubMedCrossRefGoogle Scholar
  16. Murphy ME, King JR, Lu J (1988) Malnutrition during the postnuptial molt of White-crowned sparrows: feather growth and quality. Can J Zool 66:1403–1413CrossRefGoogle Scholar
  17. Murphy ME, Miller BT, King JR (1989) A structural comparison of fault bars with feather defects known to be nutritional induced. Can J Zool 67:1311–1317CrossRefGoogle Scholar
  18. Negro JJ, Bildstein KL, Bird DM (1994) Effects of food deprivation and handling stress on fault-bar formation in nestling American kestrels. Ardea 82:263–267Google Scholar
  19. Newell DG (2001) Animal models of C. jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. Symp Ser Soc Appl Microbiol 30:57S–67SPubMedCrossRefGoogle Scholar
  20. Pap PL, Barta Z, Tökölyi J, Vágási IC (2007) Increase of feather quality during moult: a possible implication of feather deformities in the evolution of partial moult in the great tit Parus major. J Avian Biol 38:471–478CrossRefGoogle Scholar
  21. Riddle O (1908) The genesis of fault-bars in feathers and the cause of alternation of light and dark fundamental bars. Biol Bull 14:328–370CrossRefGoogle Scholar
  22. Rohwer S, Ricklefs R, Rohwer V, Copple M (2009) Allometry of the duration of flight feather molt in birds. PLoS Biol 7(6):e1000132. doi: 10.1371/journalpbio1000132 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Romano A, Rubolini D, Caprioli M, Boncoraglio G, Ambrosini R, Saino N (2011) Sex-related effects of an immune challenge on growth and begging behaviour of barn swallow nestlings. PLoS One 6:e22805PubMedCentralPubMedCrossRefGoogle Scholar
  24. Romero L, Strochlic D, Wingfield J (2005) Corticosterone inhibits feather growth: potential mechanism explaining seasonal down regulation of corticosterone during molt. Comp Biochem Physiol A Mol Integr Physiol 142:65–73PubMedCrossRefGoogle Scholar
  25. Sarasola JH, Jovani R (2006) Risk of feather damage explains fault bar occurrence in a migrant hawk, the Swainson’s hawk Buteo swainsoni. J Avian Biol 37:29–35CrossRefGoogle Scholar
  26. Sebright JS (1826) Observations upon hawking. J. Harding, LondonGoogle Scholar
  27. Sodhi NS (2002) A comparison of bird communities of two fragmented and two continuous Southeast Asian rainforests. Biodiv Conserv 11:1105–1119CrossRefGoogle Scholar
  28. Sol D, Santos DM, García P, Cuadrado M (1998) Competition for food in urban pigeons: the cost of being juvenile. Condor 298:304–1998Google Scholar
  29. Sol D, Santos DM, Cuadrado M (2000) Age-related site segregation in urban pigeons: experimental evidence of the competition hypothesis. Can J Zool 78:144–149CrossRefGoogle Scholar
  30. Uribe F, Senar JC, Colom L, Camerino M (1985) Morfometría de las palomas semidomésticas (Columba livia var.) de la ciudad de Barcelona. Misc Zool 9:339–345Google Scholar
  31. Vágási CI, Pap PL, Vincze O, Benkö Z, Marton A, Barta Z (2012) Haste makes waste but condition matters: molt rate-feather quality trade-off in a sedentary songbird. PLoS One 7:e40651PubMedCentralPubMedCrossRefGoogle Scholar
  32. Velando A (2002) Experimental manipulation of maternal effort produces differential effects in sons and daughters: implications for adaptive sex ratios in the blue-footed booby. Behav Ecol 13:443–449CrossRefGoogle Scholar
  33. Waldenstrom J, Broman T, Carlsson I, Hasselquist D, Achterberg RP, Wagenaar JA, Olsen B (2002) Prevalence of C. jejuni, C. lari, and C. coli in different ecological guilds and taxa of migrating birds. Appl Environ Microbiol 68:5911–5917PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  1. 1.Estación Biológica de Doñana Consejo Superior de Investigaciones Científicas (CSIC)SevilleSpain
  2. 2.Servei de Vigilància i Control de Plagues Urbanes Agència de Salut Pública de Barcelona (ASPB)BarcelonaSpain
  3. 3.Laboratori de l’Agència de Salut Pública de Barcelona (ASPB)BarcelonaSpain

Personalised recommendations