Journal of Ornithology

, Volume 155, Issue 3, pp 657–669 | Cite as

Suitable, reachable but not colonised: seasonal niche duality in an endemic mountainous songbird

  • Jan O. Engler
  • Dennis Rödder
  • Darius Stiels
  • Marc I. Förschler
Original Article

Abstract

The realized distribution of animals is often delimited by climatic factors which define, next to the specific habitat and food availability, their species-specific potential distribution. We studied the environmental limitations affecting the realized breeding and wintering distributions of the Citril Finch (Carduelis citrinella), one of the few endemic bird species of European mountain ranges. To assess the environmental limits that shape the seasonal distribution, we used species distribution models (SDMs) derived from macroclimate in combination with land cover information. Our data suggest a high congruence between the potential modelled breeding distribution of the Citril Finch and the currently known breeding sites, indicating a high level of niche filling. The unusual absence in several suitable breeding habitats at the eastern and northern range limit (Eastern Alps, Carpathians, Bavarian Forest, Harz Mountains, Fichtelgebirge, Krkonoše Mountains) is likely linked to a combination of both missing resources and restricted physiological migration capacities from the available wintering grounds. Since the accomplished migratory distances hardly exceed more than 500 km, it seems likely that the distance to the main wintering areas is too large for exceeding eastern and northern range limits. We discuss the differences in SDM outcomes when including distal predictor variables instead of using proximal predictors alone, and highlight the importance of considering a seasonal niche duality to gain more insights into complex range effects in species with seasonal ranges.

Keywords

Carduelis citrinella Ecological niche MaxEnt Species distribution model (SDM) 

Zusammenfassung

Geeignet, erreichbar aber unbesiedelt: saisonale Nischendualität bei einem endemischen Singvogel europäischer Gebirgsregionen

Die realisierte Verbreitung von Arten wird oft durch klimatische Faktoren begrenzt, die gemeinsam mit dem charakteristischen Habitat und der Nahrungsverfügbarkeit die artspezifische potentielle Verbreitung definiert. In dieser Studie untersuchten wir die umweltbedingten Faktoren, welche das Brut- und Winterareal des Zitronenzeisigs (Carduelis citrinella) limitieren. Um die begrenzenden Faktoren der saisonalen Verbreitungen zu quantifizieren, nutzten wir Artverbreitungsmodelle basierend auf bioklimatischen Variablen in Kombination mit Landnutzungsinformationen. Die Ergebnisse zeigten eine hohe Übereinstimmung der modellierten potentiellen Verbreitung mit der derzeitig bekannten Verbreitung der Art, was auf einen hohen Grad an Nischenfüllung („niche filling“) schließen lässt. Klimatisch geeignete, jedoch unbesiedelte Brutgebiete entlang des nördlich und östlich gelegenen Arealrandes (östliche Alpen, Karpaten, Bayerischer Wald, Harz, Fichtel- und Riesengebirge) sind höchstwahrscheinlich durch eine Kombination aus fehlenden Ressourcen einerseits und begrenzter physiologischer Migrationsleistung andererseits zu erklären. Da die bekannten Zugdistanzen nur selten weiter als 500 km reichen, ist es sehr wahrscheinlich, dass die Entfernung dieser Gebiete im Norden und im Osten zu den Hauptüberwinterungsgebieten zu groß ist. Wir diskutieren die Unterschiede in den Modellresultaten zwischen einer Prädiktorauswahl, die auch distale Prädiktorvariablen beeinhaltet, und einer mit rein proximalen Variablen. Wir unterstreichen, dass die Berücksichtigung der saisonalen Nischendualität zusätzliche Einsichten in komplexe Arealeffekte bei Arten mit saisonalen Verbreitungen gewährt.

Supplementary material

10336_2014_1049_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1484 kb)

References

  1. Alonso D, Arizaga J (2004) El verderón serrano (Serinus citrinella) en Navarra: parámetros fenológicos y movimientos migratorios. Munibe 55:95–112Google Scholar
  2. Anderberg A, Anderberg AL (1997) Den virtuella floran. Naturhistoriska riksmuseet. http://linnaeus.nrm.se/flora/di/lamia/teucr/teucscav.jpg
  3. Araújo MB, Pearson RG (2005) Equilibrium of species’ distributions with climate. Ecography 28:693–695CrossRefGoogle Scholar
  4. Araújo MB, Cabeza M, Thullier W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626CrossRefGoogle Scholar
  5. Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Mod 157:101–118CrossRefGoogle Scholar
  6. Aymí R, Tomàs X (2003) Balanc de les activitats d’anellament cientific d’ocells realitazades per L’insitut Català d’Ornitologia durant er periode 2000–2002. Rev Catalana Ornitol 20:108Google Scholar
  7. Baccetti N, Märki H (1997) Citril finch. In: Hagemeijer WJM, Blair MJ (eds) The EBCC atlas of European breeding birds: their distribution and abundance. Poyser, LondonGoogle Scholar
  8. Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11:854–866CrossRefGoogle Scholar
  9. Bauer HG, Boschert M, Hölzinger J (1995) Atlas der Winterverbreitung der Vögel Baden-Württembergs. In: Hölzinger J (ed) Die Avifauna Baden-Württembergs, vol 5. Ulmer, StuttgartGoogle Scholar
  10. Benoit F, Märki H (2004) Premières données sur l’aire de reproduction et la distribution hivernale du Venturon montagnard Serinus citrinella au nord des Pyrénées. Nos Oiseaux 33:322–323Google Scholar
  11. Bensch S (1999) Is the range size of birds constrained by their migratory program? J Biogeogr 26:1225–1236CrossRefGoogle Scholar
  12. Berlit T (2005) Brutkartierung des Zitronengirlitz (Serinus citrinella) in den Gebirgswäldern des Oberengadin und des oberen Puschlav (Schweiz). Diploma thesis, Westfälische Wilhelms-Universität MünsterGoogle Scholar
  13. Bernis F, Bernis C (1963) Breve comentario sobre la invernada de aves en la Cuenca del Ebro (enero 1962). Ardeola 8:228–231Google Scholar
  14. Bocca M, Maffei G (1984) Gli uccelli della valle d’Aosta. Tipografia la Vallée, AostaGoogle Scholar
  15. Borras A, Senar JC (2013) Verderón Serrano Serinus citrinella. In: Martí R, Del Moral JC (eds) Atlas De Las Aves En Invierno En España 2007–2010. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, MadridGoogle Scholar
  16. Borras A, Blache S, Cabrera J, Cabrera T, Senar JC (2005) Citril Finch (Serinus citrinella) populations at the north of the Pyrenees may winter in the northeast of the Iberian Peninsula. Aves 42:261–265Google Scholar
  17. Borras A, Cabrera J, Colome X, Cabrera T, Senar JC (2010) Citril Finches during the winter: patterns of distribution, the role of pines and implications for the conservation of the species. Anim Biodivers Conserv 33:89–115Google Scholar
  18. Brambilla M, Ficetola GF (2012) Species distribution models as a tool to estimate reproductive parameters: a case study with a passerine bird species. J Anim Ecol 81:781–787Google Scholar
  19. Brambilla M, Falco R, Negri I (2012) A spatially explicit assessment of within-season changes in environmental suitability for farmland birds along an altitudinal gradient. Anim Conserv 15:638–647CrossRefGoogle Scholar
  20. Brambilla M, Bassi E, Bergero V, Casale F, Chemollo M, Falco R, Longoni V, Saporetti F, Vigano E, Vitulano S (2013) Modelling distribution and potential overlap between Boreal Owl Aegolius funereus and Black Woodpecker Dryocopus martius: implications for management and monitoring plans. Bird Conserv Int. doi:10.1017/S0959270913000117 Google Scholar
  21. Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 25:1187–1201CrossRefGoogle Scholar
  22. Case TJ, Holt RD, McPeek MA, Keitt TH (2005) The community context of species’ borders: ecological and evolutionary perspectives. Oikos 108:28–46CrossRefGoogle Scholar
  23. Chan LM, Brown JL, Yoder AD (2011) Integrating statistical genetic and geospatial methods bring new power to phylogeography. Mol Phyl Evol 59:523–537CrossRefGoogle Scholar
  24. Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent J-M, de Beaulieu J-L, Sadori L, Jost A, Lunt D (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biogeogr 15:271–282CrossRefGoogle Scholar
  25. Cramp S, Perrins CM (1994) The birds of the Western Palearctic, vol VIII, Crows to finches. Oxford University Press, OxfordGoogle Scholar
  26. De Grousaz G, Lebreton P (1963) Notes sur la migration du Venturon montagnard (Carduelis citrinella L.) aux cols de Cou-Bretolet, et sur son hivernage en Suisee et en France. Nos Oiseaux 27:46–61Google Scholar
  27. Dejonghe JF (1991) Venturon montagnard Serinus citrinella. In: Yeatman-Berthelot D (ed) Atlas des oiseaux de France en hiver. Société Ornithologique de France, Paris, pp 462–463Google Scholar
  28. Dormann CF, McPherson J, Araújo MB, Bivand R, Bollinger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  29. Dvorak M, Ranner A, Berg HM (1993) Atlas der Brutvögel Österreichs. Ergebnisse der Brutvogelkartierung 1981–1985 der Österreichischen Gesellschaft für Vogelkunde. UmweltbundesamtGoogle Scholar
  30. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explaination of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  31. Feldner J, Rass P (1999) Zwei neue Brutvogelarten für Kärnten: Zwergschnäpper (Ficedula parva) und Zitronengirlitz (Serinus citrinella). Carinthia II 189(109):241–246Google Scholar
  32. Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species: the American bullfrog. Divers Distrib 13:476–485CrossRefGoogle Scholar
  33. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  34. Fornasari L, Carabela M, Corti W, Pianezza F (1998) Autumn movements of Citril Finches Serinus citrinella in the southern Alps. Ring Migr 19:23–29CrossRefGoogle Scholar
  35. Förschler MI (1997) Zum Wintervorkommen 1995/1996 des Zitronengirlitzes Serinus citrinella in den Hochlagen des Nordschwarzwaldes. Naturkundl Beob Kreis Freudenstadt 2:24Google Scholar
  36. Förschler MI (2001) Witterungsbedingte Ausweichbewegungen des Zitronengirlitzes Serinus citrinella im Nordschwarzwald. Ornithol Beob 98:209–214Google Scholar
  37. Förschler MI (2006) Absence of insular density inflation in Corsican Finches Carduelis [citrinella] corsicanus. Acta Ornithol 41:171–174CrossRefGoogle Scholar
  38. Förschler MI (2007) Seasonal variation in the diet of Citril Finches Carduelis citrinella: are they specialist or generalists? Eur J Wildl Res 53:190–194CrossRefGoogle Scholar
  39. Förschler MI, Kalko EKV (2006a) Macrogeographic variations in food choice of mainland Citril Finches Carduelis [citrinella] citrinella versus insular Corsican (Citril) Finches Carduelis [citrinella] corsicanus. J Ornithol 147:441–447CrossRefGoogle Scholar
  40. Förschler MI, Kalko EKV (2006b) Breeding ecology and nest site selection in allopatric mainland Citril Finches Carduelis [citrinella] citrinella and insular Corsican Finches Carduelis [citrinella] corsicanus. J Ornithol 147:553–564CrossRefGoogle Scholar
  41. Förschler MI, Senar JC, Perret P, Björklund M (2009) The species status of the Corsican finch Carduelis corsicana assessed by three genetic markers with different rates of evolution. Mol Phyl Evol 52:234–240CrossRefGoogle Scholar
  42. Förschler MI, Shaw DN, Bairlein F (2011) Deuterium analysis reveals potential origin of the Fair Isle Citril Finch Carduelis citrinella. Bull BOC 131:189–191Google Scholar
  43. Fortin MJ, Keitt TH, Maurer BA, Taper ML, Kaufmann DM, Blackburn TM (2005) Species’ geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 108:7–17CrossRefGoogle Scholar
  44. Fourcade Y, Engler JO, Besnard AG, Rödder D, Secondi J (2013) Confronting expert-based and modelled distributions for species with uncertain conservation status: a case study from the corncrake (Crex crex). Biol Conserv 167:161–171CrossRefGoogle Scholar
  45. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, OxfordGoogle Scholar
  46. Geister I (1983) European news. Brit Birds 76:276Google Scholar
  47. Geister I (1995) Ornitološki atlas Slovenije. Razširjenost gnezdilk. DZSGoogle Scholar
  48. Génard M, Lescourret F (1987) Organisation du peuplement avien d’une foret des Pyrenees orientales françaises. Le Gerfaut 77:463–476Google Scholar
  49. Glutz von Blotzheim UN, Bauer KM (1997) Handbuch der Vögel Mitteleuropas Band 14. Aula, Wiebelsheim, pp 501–532Google Scholar
  50. Godsoe W (2010) I can’t define the niche but I know it when I see it: a formal link between statistical theory and the ecological niche. Oikos 119:53–60CrossRefGoogle Scholar
  51. Gorman ML (1979) Island ecology. Chapman and Hall, LondonCrossRefGoogle Scholar
  52. Gregori J (1977) Ekološki in favnistični pregeld ptičev severozahodne Slovenije. Larus 29–30:70Google Scholar
  53. Grinnell J (1917) Field tests of theories concerning distributional control. Am Nat 51:115–128CrossRefGoogle Scholar
  54. Guisan A, Thuiller W (2005) Predicting species distributions: offering more than simple habitat models. Ecol Lett 8:993–1003CrossRefGoogle Scholar
  55. Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thullier W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777CrossRefGoogle Scholar
  56. Heuck C, Brandl R, Albrecht J, Gottschalk T (2013) The potential distribution of the red kite in Germany. J Ornithol 154:911–921CrossRefGoogle Scholar
  57. Hijmans RJ, Cruz JM, Rojas E, Guarino L (2001) DIVA–GIS, version 1.4. A geographic information system for the management and analysis of genetic resources data. Manual. International Potato Center and International Plant Genetic Resources InstituteGoogle Scholar
  58. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  59. Holt RD, Keitt TH (2005) Species’ borders: a unifying theme in ecology. Oikos 108:3–6CrossRefGoogle Scholar
  60. Hölzinger J, Dorka V (1997) Zitronengirlitz. In: Hölzinger J (ed) Die Vögel Baden-Württembergs. Band 3.2. Eugen Ulmer, Stuttgart, pp 584–603Google Scholar
  61. Huggett RJ (2004) Fundamentals of Biogeography, 2nd edn. Routledge, LondonGoogle Scholar
  62. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427CrossRefGoogle Scholar
  63. Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New HavenGoogle Scholar
  64. Hyndman T (2008) The Citril Finch on Fair Isle: a new British bird. Bird World 21:243–249Google Scholar
  65. Jakob SS, Heibl C, Rödder D, Blattner FR (2010) Population demography influences climatic niche evolution: evidence from diploid American Hordeum species (Poaceae). Mol Ecol 19:1423–1438PubMedCrossRefGoogle Scholar
  66. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630CrossRefGoogle Scholar
  67. Jiguet F, Barbet-Massin M, Chevallier D (2011) Predictive distribution models applied to satellite tracks: modelling the western African winter range of European migrant Black Storks Ciconia nigra. J Ornithol 152:111–118CrossRefGoogle Scholar
  68. Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200CrossRefGoogle Scholar
  69. Keller FC (1890) Ornis Carinthiae. Kleinmayr, KlagenfurtGoogle Scholar
  70. Kozak KH, Wiens JJ (2007) Climatic zonation drives latitudinal variation in speciation mechanisms. Proc R Soc Lond B 274:2995–3003CrossRefGoogle Scholar
  71. Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS–based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148PubMedCrossRefGoogle Scholar
  72. Kremen C, Cameron A, Moilanen A, Phillips SJ, Thomas CD, Beentje H, Dransfield J, Fisher BL, Glaw F, Good TC, Harper GJ, Hijmans RJ, Lees DC, Louis E, Nussbaum RA, Raxworthy CJ, Razafimpahanana A, Schatz GE, Vences M, Vieites DR, Wright PC, Zjhra ML (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320:222–226PubMedCrossRefGoogle Scholar
  73. Landbeck CL (1834) Systematische Aufzählung der Vögel Baden-Württembergs mit Angabe ihrer Aufenthaltsörter und ihrer Strichzeit. Cotta, TübingenGoogle Scholar
  74. Laube I, Graham CH, Böhning-Gaese K (2013) Intra-generic species richness and dispersal ability interact to determine geographic ranges of birds. Glob Ecol Biogeogr 22:223–232CrossRefGoogle Scholar
  75. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  76. Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151CrossRefGoogle Scholar
  77. Mackay BG, Lindemayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28:1147–1166CrossRefGoogle Scholar
  78. Maestri F, Voltolini L, Lo Valvo F (1989) Biologia riproduttiva di una comnuita’ di fringillidi in un mugeto dell Alpe Retiche (Sondrio). Riv Ital Ornitol 59:159–171Google Scholar
  79. Marini MA, Barbet-Massin M, Lopes LE, Jiguet F (2010) Predicting the occurrence of rare Brazilian birds with species distribution models. J Ornithol 151:857–866CrossRefGoogle Scholar
  80. Märki H (1976) Brutverbreitung und Winterquartier des Zitronenzeisigs Serinus citrinella nördlich der Pyrenäen. Ornithol Beob 73:67–88Google Scholar
  81. Märki H, Adamek G (2013) Nahrungsbedingt wechselnde Winterhabitate des Zitronengirlitzes Serinus citrinella in Südfrankreich. Ornithol Beob 110:437–452Google Scholar
  82. Matvejev SD (1981) Laška konopeljščica Serinus citrinella. Acrocephalus 2:59Google Scholar
  83. McInnes L, Purvis A, Orme CDL (2009) Where do species’ geographic ranges stop and why? Landscape impermeability and the Afrotropical avifauna. Proc R Soc Lond B 276:3063–3070CrossRefGoogle Scholar
  84. Mingozzi T, Boano G, Pulcher C (1988) Atlante degli uccelli nidificanti in Piemonte e Val d’Aosta 1980–1984. Monografie VIII, Museo Regionale di Scienze Naturali di TorinoGoogle Scholar
  85. Moltoni E (1969) Gli uccelli del Parco nazionale dello Stelvio. Tipografia, SondrioGoogle Scholar
  86. Moritz D, Bachler A (2001) Die Brutvögel Osttirols. Ein kommentierter Verbreitungsatlas. Author’s editionGoogle Scholar
  87. Newton I (2003) The speciation and biogeography of birds. Academic, WalthamGoogle Scholar
  88. Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371CrossRefGoogle Scholar
  89. Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31:272–278Google Scholar
  90. Phillips SJ, Dudík M (2008) Modeling of species distributions with MaxEnt: new extensions and comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  91. Phillips SJ, Dudík M, Schapire RE, (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning, BanffGoogle Scholar
  92. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  93. Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197PubMedCrossRefGoogle Scholar
  94. Praz JC, Oggier PA (1973) Sur l’hivernage due Venturon montagnard en Valais. Nos Oiseaux 32:109–112Google Scholar
  95. Probst R (2012) Warum brütet der Zitronenzeisig (Carduelis citrinella) in Kärnten geanu am Dobratsch. Carinthia II 122:493–504Google Scholar
  96. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3–900051–07–0. http://www.R-project.org
  97. Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TWJ, Veith M, Walker S, Fisher MC, Lötters S (2009a) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52–66CrossRefGoogle Scholar
  98. Rödder D, Schmidtlein S, Veith M, Lötters S (2009b) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or predictors studied? PLoS ONE 4:e7843PubMedCentralPubMedCrossRefGoogle Scholar
  99. Rödder D, Engler JO, Bonke R, Weinsheimer F, Pertel W (2010) Fading of the last giants: an assessment of habitat availability of the Sunda gharial Tomistoma schlegelii and coverage with protected areas. Aquat Conserv 20:678–684CrossRefGoogle Scholar
  100. Rödder D, Lawing AM, Flecks M, Ahmadzadeh F, Dambach J, Engler JO, Habel J-C, Hartmann T, Hörnes D, Ihlow F, Schidelko K, Stiels D, Polly PD (2013) Evaluating the significance of paleophylogeographic species distribution models in reconstructing quaternary range-shifts of Nearctic chelonians. PLoS ONE 8:e72855PubMedCentralPubMedCrossRefGoogle Scholar
  101. Schidelko K, Stiels D, Rödder D (2011) Historical stability of diversity patterns in African estrildid finches (Estrildidae). Biol J Linn Soc 102:455–470CrossRefGoogle Scholar
  102. Smith SA, Donoghue MJ (2010) Combining Historical Biogeography with Niche Modeling in the Caprifolium Clade of Lonicera (Caprifoliaceae, Dipsacales). Syst Biol 59:322–341PubMedCrossRefGoogle Scholar
  103. Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1121PubMedCrossRefGoogle Scholar
  104. Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods and assumptions. Proc Natl Acad Sci USA 106:19644–19650PubMedCentralPubMedCrossRefGoogle Scholar
  105. Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inf 2:1–10Google Scholar
  106. Spina F, Volponi S (2008) Atlante Della Migrazione Degli Uccelli in Italia. 2. Passeriformi. Roma: Ministero dell’ Ambiente e della Tutela del Territorio e del Mare, Instituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)Google Scholar
  107. Stiels D, Schidelko K, Engler JO, van den Elzen R, Rödder D (2011) Predicting the potential distribution of the invasive common waxbill Estrilda astrild (Passeriformes: estrildidae). J Ornithol 152:769–780CrossRefGoogle Scholar
  108. Svensson L, Grant PJ, Mullarney K (2009) Collins bird guide. Harper Collins, New YorkGoogle Scholar
  109. Swets K (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293PubMedCrossRefGoogle Scholar
  110. Thorup K (2006) Does the migration programme constrain dispersal and range sizes of migratory birds? J Biogeogr 33:1166–1171CrossRefGoogle Scholar
  111. Vaurie C (1959) The birds of the palearctic fauna. Passeriformes. Witherby, LondonGoogle Scholar
  112. Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New YorkCrossRefGoogle Scholar
  113. von Kettner WF (1849) Darstellung der ornithologischen Verhältnisse des Großherzogtums Baden. Beitr Rheinischer Naturgesch 1:39–100Google Scholar
  114. Wisz MS, Hijmans RJ, Peterson AT, Graham CH, Guisan A, NPSDW Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773CrossRefGoogle Scholar
  115. Zink G, Bairlein F (1995) Zug europäischer Singvögel. Band 3. Aula, WiebelsheimGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • Jan O. Engler
    • 1
    • 2
  • Dennis Rödder
    • 1
  • Darius Stiels
    • 1
  • Marc I. Förschler
    • 3
  1. 1.Zoological Research Museum Alexander KoenigBonnGermany
  2. 2.Department of Wildlife ManagementUniversity of GöttingenGöttingenGermany
  3. 3.Department of Monitoring and ResearchNational Park Black ForestSeebachGermany

Personalised recommendations