Advertisement

Journal of Ornithology

, Volume 155, Issue 3, pp 611–619 | Cite as

Seasonal variation in the diet of Spoonbill chicks in the Wadden Sea: a stable isotopes approach

  • El-Hacen Mohamed El-Hacen
  • Theunis Piersma
  • Jeltje Jouta
  • Otto Overdijk
  • Tamar Lok
Original Article

Abstract

We used stable isotope tracers in the growing primary feathers of Eurasian Spoonbill chicks (Platalea leucorodia leucorodia) to study seasonal variation in their diet on one of the Frisian islands, Schiermonnikoog, The Netherlands. Using growing individual primaries as natural samplers over time, samples were taken along the length of primary feathers to estimate both within- and between-individual variation in diet. Absolute isotopic ratios of feather material ranged from −26.2 to −14.7 ‰ for carbon (δ13C) and from 13.0 to 18.7 ‰ for nitrogen (δ15N). The variation in δ13C values suggests the use of a variety of feeding habitats, ranging from freshwater to marine. Across the breeding season, there was a shift from predominantly freshwater prey early on to a more marine diet later in the season. Surprisingly, this shift did not occur within the growth trajectory of early born chicks which instead showed the opposite, but it did occur within individual chicks born later in the season. Stable isotope Bayesian mixing-model (SIAR) outcomes demonstrated that the freshwater/brackish prey had the highest isotopic contribution “(51 %; 95 % confidence interval 39–63 %) to the diet early in the breeding season, whereas marine prey contributed most (78 %; 66–89 %) to the diet later. That chicks fed with either freshwater or marine food items had similar body condition indices suggests that the eating of marine prey did not come at a major cost for growing Spoonbill chicks.

Keywords

Chick body condition Diet shift Feather sampling Platalealeucorodia SIAR Stable isotope analysis 

Zusammenfassung

Jahreszeitliche Unterschiede in der Nahrungszusammensetzung von Löfflerküken im Wattenmeer: eine Analyse stabiler Isotope

Anhand der Signaturen stabiler Isotope in wachsenden Handschwingen von Löfflerküken (Platalea leucorodia leucorodia) auf Schiermonnikoog, einer der Westfriesischen Inseln (Niederlande), wurden jahreszeitliche Unterschiede in deren Nahrungszusammensetzung untersucht. Da die einzelnen wachsenden Federn praktisch natürliche Zeitreihen darstellen, nahmen wir Proben über die ganze Länge der Handschwingen, um die Variation in der Nahrungszusammensetzung sowohl bezogen auf einzelne Individuen als auch auf die Unterschiede zwischen verschiedenen Tieren abzuschätzen. Die absoluten Isotopenverhältnisse des Federmaterials lagen zwischen −26.2 ‰ und −14.7 ‰ für Kohlenstoff (δ13C) beziehungsweise zwischen 13.0 und 18.7 ‰ für Stickstoff (δ15N). Die Variation der δ13C-Werte deutet darauf hin, dass zur Nahrungssuche eine Vielzahl von Habitaten genutzt werden, die von Süßwasserhabitaten bis zu marinen Lebensräumen reichen. Im Verlauf der Brutsaison kam es zu einer Verschiebung von überwiegend im Süßwasser lebender Beute zu Beginn zu einem stärker marin geprägten Nahrungsspektrum gegen Ende der Brutzeit. Überraschenderweise ereignete sich diese Verschiebung nicht während der Wachstumsphase früh geschlüpfter Küken, bei denen stattdessen das Gegenteil zu beobachten war, sondern zeigte sich bei einzelnen Küken, welche zu einem späteren Zeitpunkt schlüpften. Die Ergebnisse der Bayes’schen Mischmodelle stabiler Isotope (SIAR) zeigten, dass Beute aus Süß- und Brackwasserhabitaten am Anfang der Brutsaison den größten Teil zur Isotopenzusammensetzung beitrug (51 %; 95 %-Konfidenzintervall: 39–63 %), wohingegen später marine Beutetiere den höchsten Anteil am Nahrungsspektrum ausmachten (78 %; 66–89 %). Dass Küken, die mit Süßwassertieren gefüttert wurden, ähnliche Konditionsindizes besaßen wie Küken, die marine Nahrung bekommen hatten, weist darauf hin, dass der Verzehr mariner Beutetiere für wachsende Löfflerküken keinen großen Nachteil darstellt.

Notes

Acknowledgments

We are grateful to Jort Ossenbaar for assistance during the stable isotope analysis, to Petra de Goeij and many others for their help in the field, to Suzanne Bakker for prey isotope analysis and to Estefania Velilla Perdomo, Rebecca Reurslag and Kees Camphuysen for the analysis of regurgitates. This study was financially supported by the Netherlands Organisation for Scientific Research (NWO-ALW grant nr 81701012, awarded to T.P.), by the Waddenfonds (Metawad and Waddensleutels projects), Vereniging Natuurmonumenten, le Parc National du Banc d’Arguin (PNBA), la Fondation Internationale du Banc d’Arguin (FIBA), the University of Groningen, the NIOZ Royal Netherlands Institute for Sea Research. Our study complied with all the Dutch regulations on animal care and was carried out under licence of the Animal Experimental Committee of the University of Groningen (licence DEC-4752D). We are grateful for the constructive help by anonymous reviewers. Dick Visser made the final drawings.

Supplementary material

10336_2014_1043_MOESM1_ESM.docx (276 kb)
Supplementary material 1 (DOCX 275 kb)

References

  1. Abraham CL (2008) Relative contribution of euphausiid prey species and timing of breeding to Cassin’s Auklet Ptychoramphus aleuticus growth: within-season effects. J Avian Biol 39:178–188CrossRefGoogle Scholar
  2. Altenburg W, Wymenga E (1997) Voedsel voor lepelaars. Rapport Vogelbescherming Nederland 32, ZeistGoogle Scholar
  3. Barnes GG, Nudds TD (1991) Salt tolerance in American Black Ducks, Mallards, and their F1-hybrids. Auk 108:89–98Google Scholar
  4. Bauchau V, Horn H, Overdijk O (1998) Survival of Spoonbills on Wadden Sea islands. J Avian Biol 29:177–182CrossRefGoogle Scholar
  5. Bearhop S, Thompson DR, Waldron S, Russell IC, Alexander G, Furness RW (1999) Stable isotopes indicate the extent of freshwater feeding by Cormorants (Phalacrocorax carbo) shot at inland fisheries in England. J Appl Ecol 36:75–84CrossRefGoogle Scholar
  6. Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458PubMedCrossRefGoogle Scholar
  7. Beaulieu M, Spee M, Lazin D, Ropert-Coudert Y, le Maho Y, Ancel A, Raclot T (2010) Ecophysiological response of Adelie Penguins facing an experimental increase in breeding constraints. J Exp Biol 213:33–39PubMedCrossRefGoogle Scholar
  8. Beukema JJ (1992) Dynamics of juvenile Shrimp Crangon crangon in a tidal-flat nursery of the Wadden Sea after mild and cold winters. Mar Ecol Prog Ser 83:157–165CrossRefGoogle Scholar
  9. Bryant R, Jones IL, Hipfner JM (1999) Responses to changes in prey availability by Common Murres and Thick-billed Murres at the Gannet Islands, Labrador. Can J Zool 77:1278–1287CrossRefGoogle Scholar
  10. Campos J, Bio A, Cardoso J, Dapper R, Witte JIJ, van der Veer HW (2010) Fluctuations of Brown Shrimp Crangon crangon abundance in the western Dutch Wadden Sea. Mar Ecol Prog Ser 405:203–219CrossRefGoogle Scholar
  11. Campos J, Moreira C, Freitas F, van der Veer HW (2012) Short review of the eco-geography of Crangon. J Crust Biol 32:159–169CrossRefGoogle Scholar
  12. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (delta N-15 and delta C-13): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453CrossRefGoogle Scholar
  13. Chisholm BS, Nelson DE, Schwarcz HP (1982) Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216:1131–1132PubMedCrossRefGoogle Scholar
  14. Craig H (1953) The geochemistry of the stable carbon isotopes. Geochim Cosmochim Acta 3:53–92CrossRefGoogle Scholar
  15. Cramp S, Simmons KEL (eds) (1977) Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic, vol 1: ostrich to ducks. Oxford University Press, OxfordGoogle Scholar
  16. Davoren GK, Burger AE (1999) Differences in prey selection and behaviour during self-feeding and chick provisioning in Rhinoceros Auklets. Anim Behav 58:853–863PubMedCrossRefGoogle Scholar
  17. de Goeij P, Kemper JH, van Wetten JCJ (1985) De lepelaar in het Waddengebied. Waddenbulletin 20:5–7Google Scholar
  18. Dosch JJ (1997) Salt tolerance of nestling Laughing Gulls: an experimental field investigation. Colon Waterbirds 20:449–457CrossRefGoogle Scholar
  19. Eggers S (2000) Compensatory frugivory in migratory Sylvia Warblers: geographical responses to season length. J Avian Biol 31:63–74CrossRefGoogle Scholar
  20. El-Hacen EM, Overdijk O, Lok T, Olff H, Piersma T (2013) Home range, habitat selection, and foraging rhythm in Mauritanian Spoonbills (Platalea leucorodia balsaci): a satellite tracking study. Waterbirds 36:277–286CrossRefGoogle Scholar
  21. Eriksson BK, van der Heide T, van de Koppel J, Piersma T, van der Veer HW, Olff H (2010) Major changes in the ecology of the Wadden Sea: human impacts, ecosystem engineering and sediment dynamics. Ecosystems 13:752–764CrossRefGoogle Scholar
  22. Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  23. Fry B (2002) Conservative mixing of stable isotopes across estuarine salinity gradients: a conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25:264–271CrossRefGoogle Scholar
  24. Fry B (2006) Stable isotope ecology. Springer, BerlinCrossRefGoogle Scholar
  25. Fry B, Scalan RS, Parker PL (1983) 13C/12C ratios in marine food webs of the Torres Strait, Queensland. Aust J Mar Freshw Res 34:707–715CrossRefGoogle Scholar
  26. Ghosh M, Singh P, Mohan D (2011) Seasonal variation in foraging ecology of three species of overwintering Leaf Warblers (genus Phylloscopus) in the Himalayan foothills. J Ornithol 152:869–877CrossRefGoogle Scholar
  27. Gutiérrez JS, Masero JA, Abad-Gomez JM, Villegas A, Sanchez-Guzman JM (2011) Understanding the energetic costs of living in saline environments: effects of salinity on basal metabolic rate, body mass and daily energy consumption of a long-distance migratory shorebird. J Exp Biol 214:829–835PubMedCrossRefGoogle Scholar
  28. Hancock J, Kushlan J, Kahl M (eds) (1992) Storks, ibises and spoonbills of the world. Academic, LondonGoogle Scholar
  29. Hannam KM, Oring LW, Herzog MP (2003) Impacts of salinity on growth and behavior of American Avocet chicks. Waterbirds 26:119–125CrossRefGoogle Scholar
  30. Harriman AE (1967) Laughing Gulls offered saline in preference and survival tests. Physiol Zool 40:273–279Google Scholar
  31. Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188CrossRefGoogle Scholar
  32. Hobson KA, Welch HE (1992) Determination of trophic relationships within a High Arctic marine food web using delta C13 and delta N15 analysis. Mar Ecol Prog Ser 84:9–18CrossRefGoogle Scholar
  33. Hufnagl M, Temming A (2011) Growth in the Brown Shrimp Crangon crangon. II. Meta-analysis and modelling. Mar Ecol Prog Ser 435:155–172CrossRefGoogle Scholar
  34. Huntingford FA, Chellappa S, Taylor AC, Strang RHC (2001) Energy reserves and reproductive investment in male Three-spined Sticklebacks Gasterosteus aculeatus. Ecol Freshw Fish 10:111–117CrossRefGoogle Scholar
  35. Jaeger A, Connan M, Richard P, Cherel Y (2010) Use of stable isotopes to quantify seasonal changes of trophic niche and levels of population and individual specialisation in seabirds. Mar Ecol Prog Ser 401:269–277CrossRefGoogle Scholar
  36. Jensen PM, Madsen P, Jensen LS, Pipper CB (2012) Differences in carbon and nitrogen stable isotope signatures amongst wild and released Pheasant populations. Eur J Wildl Res 58:755–760CrossRefGoogle Scholar
  37. Johnston JW, Bildstein KL (1990) Dietary salt as a physiological constraint in White Ibis breeding in an estuary. Physiol Zool 63:190–207Google Scholar
  38. Kemper JH (1995) Role of the Three-spined Stickleback (Gasterosteus aculeatus L) in the food ecology of the Spoonbill Platalea leucorodia. Behaviour 132:1285–1299CrossRefGoogle Scholar
  39. Klaassen M, Ens BJ (1990) Is salt stress a problem for waders wintering on the Banc d’Arguin, Mauritania. Ardea 78:67–74Google Scholar
  40. Knoff AJ, Macko SA, Erwin RM, Brown KM (2002) Stable isotope analysis of temporal variation in the diets of pre-fledged Laughing Gulls. Waterbirds 25:142–148CrossRefGoogle Scholar
  41. Macarthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603–609CrossRefGoogle Scholar
  42. Massias A, Becker PH (1990) Nutritive value of food and growth in Common Tern (Sterna hirundo) chicks. Ornis Scand 21:187–194CrossRefGoogle Scholar
  43. Matheu E, del Hoyo J (1992) Family Threskiornithidae (Ibises and Spoonbills). In: del Hoyo J, Elliot A, Sargatal J (eds) Handbook of the birds of the World, vol 1. Lynx, Barcelona, pp 472–506Google Scholar
  44. Minagawa M, Wada E (1984) Stepwise enrichment of 15 N along food chains: further evidence and the relation between 15 N and animal age. Geochim Cosmochim Acta 48:1135–1140CrossRefGoogle Scholar
  45. Mizutani H, Fukuda M, Kabaya Y, Wada E (1990) Carbon isotope ratio of feathers reveals feeding behavior of Cormorants. Auk 107:400–403CrossRefGoogle Scholar
  46. Östlund-Nilsson S (ed) (2007) Biology of the three-spined stickleback. CRC, New YorkGoogle Scholar
  47. Parnell AC, Inger R, Bearhop S, Jackson AL (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5(3):e9672. doi: 10.1371/journal.pone.0009672 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Piersma T (1980) Lepelaars op de Mokkebank. Vanellus 33:54–57Google Scholar
  49. Piersma T (2012) What is habitat quality? Dissecting a research portfolio on shorebirds. In: Fuller R (ed) Birds and habitat: relationships in changing landscapes. Cambridge University Press, Cambridge, pp 383–407CrossRefGoogle Scholar
  50. Piersma T, van der Velde M, El-Hacen EM, Lok T, Overdijk O (2012) Molecular verification of the subspecies status of the Mauritanian Spoonbill Platalea leucorodia balsaci. Ardea 100:131–136CrossRefGoogle Scholar
  51. Pinheiro JC, Bates DM (eds) (2000) Mixed-effects models in S and S-Plus. Springer, New YorkGoogle Scholar
  52. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  53. Quillfeldt P, Voigt CC, Masello JF (2010) Plasticity versus repeatability in seabird migratory behaviour. Behav Ecol Sociobiol 64:1157–1164PubMedCentralPubMedCrossRefGoogle Scholar
  54. Schell DM, Saupe SM, Haubenstock N (1989) Bowhead Whale (Balaena mysticetus) growth and feeding as estimated by δ13C techniques. Mar Biol 103:433–443CrossRefGoogle Scholar
  55. Schoeninger MJ, Deniro MJ (1984) Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim Cosmochim Acta 48:625–639CrossRefGoogle Scholar
  56. Smith AD, Donohue K, Dufty AM (2008) Intrafeather and intraindividual variation in the stable-hydrogen isotope (δD) content of raptor feathers. Condor 110:500–506CrossRefGoogle Scholar
  57. Steenweg RJ, Ronconi RA, Leonard ML (2011) Seasonal and age-dependent dietary partitioning between the Great black-backed and Herring Gulls. Condor 113:795–805CrossRefGoogle Scholar
  58. Thompson DR, Furness RW (1995) Stable-isotope ratios of carbon and nitrogen in feathers indicate seasonal dietary shifts in Northern Fulmars. Auk 112:493–498CrossRefGoogle Scholar
  59. Tulp I, Bolle LJ, Meesters E, de Vries P (2012) Brown Shrimp abundance in northwest European coastal waters from 1970 to 2010 and potential causes for contrasting trends. Mar Ecol Prog Ser 458:141–154CrossRefGoogle Scholar
  60. Valera F, Wagner RH, Romero-Pujante M, Gutierrez JE, Rey PJ (2005) Dietary specialization on high protein seeds by adult and nestling Serins. Condor 107:29–40CrossRefGoogle Scholar
  61. van de Pol M, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77:753–758CrossRefGoogle Scholar
  62. van Dijk K (1995) Voedsel- en rustgebieden van de Lepelaar in Nederland buiten Noord-Holland. Technisch Rapport Vogelbescherming Nederland 14, ZeistGoogle Scholar
  63. van Gils JA, Spaans B, Dekinga A, Piersma T (2006) Foraging in a tidally structured environment by Red Knots (Calidris canutus): ideal, but not free. Ecology 87:1189–1202PubMedCrossRefGoogle Scholar
  64. van Wetten JCJ, Wintermans GJM (1986) The food ecology of the Spoonbill. Verslagen en technische gegevens, University of Amsterdam, AmsterdamGoogle Scholar
  65. Wassenaar LI, Hobson KA (2006) Stable-hydrogen isotope heterogeneity in keratinous materials: mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun Mass Spectr 20:2505–2510CrossRefGoogle Scholar
  66. Wiley AE, Ostrom PH, Stricker CA, James HF, Gandhi H (2010) Isotopic characterization of flight feathers in two pelagic seabirds: sampling strategies for ecological studies. Condor 112:337–346CrossRefGoogle Scholar
  67. Wiley AE, Welch AJ, Ostrom PH, James HF, Stricker CA, Fleischer RC, Gandhi H, Adams J, Ainley DG, Duvall F, Holmes N, Hu D, Judge S, Penniman J, Swindle KA (2012) Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird. Oecologia 168:119–130PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  • El-Hacen Mohamed El-Hacen
    • 1
    • 2
  • Theunis Piersma
    • 1
    • 3
  • Jeltje Jouta
    • 1
    • 3
  • Otto Overdijk
    • 4
  • Tamar Lok
    • 1
    • 3
  1. 1.Animal Ecology Group, Centre for Ecological and Evolutionary StudiesUniversity of GroningenGroningenThe Netherlands
  2. 2.Parc National du Banc d’Arguin (PNBA)NouakchottMauritania
  3. 3.Department of Marine EcologyRoyal Netherlands Institute for Sea Research (NIOZ)Den BurgThe Netherlands
  4. 4.Werkgroep LepelaarSchiermonnikoogThe Netherlands

Personalised recommendations