Journal of Ornithology

, Volume 155, Issue 3, pp 581–589 | Cite as

On the systematic position of the Black-collared Lovebird Agapornis swindernianus (Agapornithinae, Psittaciformes)

  • Albrecht Manegold
  • Lars Podsiadlowski
Original Article


The first molecular and morphological study of the insufficiently known Black-collared Lovebird Agapornis swindernianus of West and Central Africa indicates that this species is the sister taxon of all the remaining Agapornis parrots. The systematic position of the Grey-headed Lovebird A. canus could not be convincingly resolved by the sequence analysis of the cytochrome b gene, but morphological characters support earlier assumptions that this species forms a clade with the Red-faced and the Black-winged Lovebird, A. pullarius and A. taranta. The new phylogeny of Agapornis presented here suggests that the last common ancestor of lovebirds originated on the African continent, and that it was a more arboreal forest-dweller, probably with a preference for small fruit seeds. Thus, a preference to more open woodlands and a change to a more granivorous diet must have evolved after the split of the lineages leading to A. swindernianus and all the remaining lovebird species.


Agapornithinae Psittacoidea Loriculus Os lacrimale Os palatinum Niche transformation 


Die systematische Einordnung des Grünköpfchens Agapornis swindernianus (Agapornithinae, Psittaciformes)

Die erste molekulare und morphologische Analyse zur systematischen Einordnung des kaum bekannten Grünköpfchens (Agapornis swindernianus) lässt den Schluss zu, dass diese zentralafrikanische Art das Schwestertaxon zu allen übrigen Unzertrennlichen (Agapornis) darstellt. Die Verwandtschaftsbeziehungen des Grauköpfchens (A. canus) konnten dagegen nicht mit Hilfe der Analyse der Cytochrom b Sequenz geklärt werden. Morphologische Merkmale stützen aber frühere Hypothesen, nach denen das Grauköpfchen mit dem Orangeköpfchen (A. pullarius) und dem Tarantapapagei (A. taranta) auf eine nur ihnen gemeinsame Stammart zurückzuführen ist. Die hier vorgestellte Stammbaumhypothese legt die Vermutung nahe, dass die letzte gemeinsame Stammart der Unzertrennlichen afrikanischen Ursprungs ist, und dass Unzertrennliche ursprünglich Bewohner immergrüner tropischer Regenwälder waren, die sich möglicherweise bevorzugt von kleinen Fruchtsamen ernährten. Die Bevorzugung von Baumsavannen und ähnlichen offenen Habitaten sowie der Wechsel zu einer vor allem aus Grassamen bestehenden Nahrung erfolgte erst nach der Abspaltung der A. swindernianus-Linie in der Ahnenlinie der übrigen Agapornis-Arten.



We thank S. Tränkner (Senckenberg Forschungsinstitut Frankfurt) for taking the photographs, and A. Gamauf (Natural History Museum Vienna), G. Lenglet (Royal Belgian Institute of Natural Sciences, Brussels), P. Eckhoff (Museum für Naturkunde Berlin), G. Mayr (Senckenberg Forschungsinstitut Frankfurt) and R. van den Elzen and S. Rick (Zoologisches Forschungsmuseum Alexander Koenig, Bonn), for allowing access to collections and specimens. We are also very grateful to R. Ginzberg and J. Woods (Deleware Museum of Natural History, Wilmington) for photographs of the skull of Bolbopsittacus lunulatus, as well as to S. Stadler (Zoo Frankfurt) for information on the morphology of hatchlings of Loriinae and Agapornithinae. P. Johnston (University of Auckland) and T. Worthy (University of Adelaide) kindly helped with the terminology of structures of the parrots’ skull. Comments of an anonymous reviewer and the subject editor improved an earlier version of the manuscript. This study was supported by Deutsche Forschungsgemeinschaft (DFG) grant MA 4809/1-1.

Supplementary material

10336_2013_1039_MOESM1_ESM.doc (68 kb)
Supplementary material 1 (DOC 68 kb)
10336_2013_1039_MOESM2_ESM.doc (38 kb)
Supplementary material 2 (DOC 38 kb)
10336_2013_1039_MOESM3_ESM.doc (25 kb)
Supplementary material 3 (DOC 25 kb)


  1. Baumel JJ, Witmer LM (1993) Osteologica. In: Baumel JJ, King AS, Breazile JE, Evans HE, VandenBerge JC (eds) Handbook of avian anatomy: nomina anatomica avium, 2nd edn. Nuttall Ornithological Club, Cambridge, pp 45–132Google Scholar
  2. Chapin JP (1932) The birds of the Belgian Congo, Part I. Bull Am Mus Nat Hist 65:3–756Google Scholar
  3. Chapin JP (1939) The birds of the Belgian Congo, Part II. Bull Am Mus Nat Hist 75:3–632Google Scholar
  4. Collar NJ (1997) Family Psittacidae (Parrots). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 4., Sandgrouse to cuckoos. Lynx, Barcelona, pp 280–477Google Scholar
  5. Dilger WC (1960) The comparative ethology of African parrot genus Agapornis. Z Tierpsychol 17:64–685Google Scholar
  6. Eberhard JR (1998) Evolution of nest-building behavior in Agapornis parrots. Auk 115:455–464CrossRefGoogle Scholar
  7. Elton S (2008) The environmental context of human evolutionary history in Eurasia and Africa. J Anat 212:377–393PubMedCentralPubMedCrossRefGoogle Scholar
  8. Forshaw JM (1989) Parrots of the world, 3nd edn. Lansdown, MelbourneGoogle Scholar
  9. Forshaw JM (2010) Parrots of the world. Princeton University Press, Princeton Google Scholar
  10. Goloboff P (1999) Nona (no name) ver. 2. Published by the author, Tucumán, ArgentinaGoogle Scholar
  11. Hampe H (1934) Die Unzertrennlichen. Friedrich Vieweg, BraunschweigGoogle Scholar
  12. Hampe H (1938) Über Nestbau und Geschlechtsunterschiede der Agapornis-Arten. J Ornithol 86:107–112CrossRefGoogle Scholar
  13. Hampe H (1939) Zur Systematik von Agapornis. Ornithol Monatsber 47:4–6Google Scholar
  14. Homberger D (1980) Funktionell-morphologische Untersuchungen zur Radiation der Ernährungs- und Trinkmethoden der Papageien (Psittaci). Bonn Zool Monogr 13:1–192Google Scholar
  15. Homberger DG (1986) The lingual apparatus of the African Grey Parrot, Psittacus erithacus Linné (Aves: Psittacidae): description and theoretical mechanical analysis. Ornithol Monogr 39:i–xii + 1–233Google Scholar
  16. Joseph L, Toon A, Schirtzinger EE, Wright TF (2011) Molecular systematics of two enigmatic genera Psittacella and Pezoporus illuminate the ecological radiation of Australo-Papuan parrots (Aves: Psittaciformes). Mol Phylogen Evol 59:675–684CrossRefGoogle Scholar
  17. Joseph L, Toon A, Schirtzinger EE, Wright TF, Schodde R (2012) A revised nomenclature and classification for family-group taxa of parrots. Zootaxa 3205:26–40Google Scholar
  18. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780PubMedCentralPubMedCrossRefGoogle Scholar
  19. Kundu S, Jones CG, Prŷs-Jones R, Groombridge JJ (2012) The evolution of the Indian Ocean parrots (Pisttaciformes): Extinction, adaptive radiation and eustacy. Mol Phylogen Evol 62:296–305CrossRefGoogle Scholar
  20. Manegold A (2013) Two new parrot species (Psittaciformes) from the early Pliocene of Langebaanweg, South Africa, and their palaeoecological implications. Ibis 155:127–139CrossRefGoogle Scholar
  21. Mayr G (2008) The phylogenetic affinities of the parrot taxa Agapornis, Loriculus and Melopsittacus (Aves: Psittaciformes): hypotarsal morphology supports the results of molecular analyses. Emu 108:23–27CrossRefGoogle Scholar
  22. Mayr G (2010) Parrot interrelationships—morphology and the new molecular phylogenies. Emu 110:348–357CrossRefGoogle Scholar
  23. Moreau RE (1948) Aspects of evolution in the parrot genus Agapornis. Ibis 90:206–239CrossRefGoogle Scholar
  24. Neunzig R (1929) Zur Brutbiologie der Agapornis- und Loriculus-Arten. Beitr Fortpfl-Biol Vögel 5:124–132Google Scholar
  25. Nixon KC (1999–2002) WinClada, Version 1.00.08. Published by the author, Ithaca, New YorkGoogle Scholar
  26. Safford R, Hawkins F (2013) The birds of Africa, vol VIII: The Malagasy region. Christopher Helm, LondonGoogle Scholar
  27. Schweizer M, Seehausen O, Güntert M, Hertwig ST (2010) The evolutionary diversification of parrots supports a taxon pulse model with multiple trans-oceanic dispersal events and local radiations. Mol Phylogenet Evol 54:984–994PubMedCrossRefGoogle Scholar
  28. Schweizer M, Seehausen O, Hertwig ST (2011) Macroevolutionary patterns in the diversification of parrots: effects of climate change, geological events and key innovations. J Biogeogr 38:2176–2194CrossRefGoogle Scholar
  29. Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the tole of morphology. Syst Biol 52:539–548PubMedGoogle Scholar
  30. Smith GA (1975) Systematics of parrots. Ibis 117:18–67CrossRefGoogle Scholar
  31. Snow DW (ed) (1978) An atlas of speciation in African non-passerine birds. British Museum (Natural History), LondonGoogle Scholar
  32. Sonet G, Van Houdt J, Nagy ZT, Breman FC, Louette M, Verheyen E (2011) Applicability of DNA barcoding to museum specimens of birds from the Democratic Republic of the Congo. Bonn Zool Monogr 57:117–131Google Scholar
  33. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690PubMedCrossRefGoogle Scholar
  34. Stegmann B (1964) Die funktionelle Bedeutung des Schlüsselbeines bei den Vögeln. J Ornithol 105:450–463CrossRefGoogle Scholar
  35. Verheyen R (1956) Analyse du potentiel morphologique et projet d’une nouvelle classification des Psittaciformes. Bull Inst R Sci Nat Belg 32:1–54Google Scholar
  36. von Boetticher H (1944) Die Verwandtschaftsbeziehungen der afrikanischen Papageien (Poicephalus und Agapornis). Zool Anz 145:10–27Google Scholar
  37. Wright TF, Schirtzinger EE, Matsumoto T, Eberhard JR, Graves GR, Sanchez JJ, Capelli S, Müller H, Scharpegge J, Chambers GK, Fleischer RC (2008) A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous. Mol Biol Evol 25:2141–2156PubMedCentralPubMedCrossRefGoogle Scholar
  38. Zhou L, Su YCF, Thomas DC, Saunders RMK (2012) ‘Out-of-Africa’ dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae). J Biogeogr 39:322–335CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2014

Authors and Affiliations

  1. 1.Sektion OrnithologieSenckenberg Forschungsinstitut und NaturmuseumFrankfurtGermany
  2. 2.Comparative Genomics and Animal Evolution, Institut für Evolutionsbiologie & Zoo-ÖkologieUniversität BonnBonnGermany

Personalised recommendations