Journal of Ornithology

, Volume 155, Issue 2, pp 539–548 | Cite as

Corticosterone in territorial male Swainson’s Thrushes varies in relation to forest age but not vegetation cover

  • James W. Rivers
  • Andrea L. Liebl
  • Lynn B. Martin
  • Matthew G. Betts
Original Article

Abstract

Glucocorticoids are thought to be related to habitat quality and may provide information about the relative health of individuals. We used a model selection approach to test whether plasma glucocorticoid levels of the Swainson’s thrush (Catharus ustulatus) were associated with two attributes that may reflect breeding habitat quality in coniferous plantation forests: stand age and vegetation cover. For baseline corticosterone, the top model included stand age with limited support for models that included vegetation cover. Mean baseline corticosterone for territorial male thrushes sampled in mature stands was 78.2 % higher than territorial males sampled in early seral stands. For handling-induced corticosterone, there was limited separation among candidate models, and only one model, containing stand age and Julian day, was better supported than the null model. Despite previous research that has shown hardwood cover is an important component of breeding habitat quality for thrushes, our investigation found limited evidence that vegetation cover was associated with either baseline or handling-induced corticosterone levels. Given that early seral and mature conifer forests are characterized by markedly different habitat features, we hypothesize that the observed differences in baseline corticosterone represent either reduced fitness of male thrushes in mature stands or an adaptive adjustment of glucocorticoid levels to match local environmental conditions that equalize fitness across stands of different ages.

Keywords

Catharus ustulatus Corticosterone Early seral forest Glucocorticoids Habitat quality Stress response Swainson’s Thrush 

Zusammenfassung

Der Corticosteronspiegel territorialer Zwergdrossel-Männchen variiert in Abhängigkeit vom Waldalter und nicht von der Vegetationsbedeckung

Es wird vermutet, dass Glucocorticoide im Zusammenhang mit der Habitatqualität stehen und daher Aufschlüsse über den relativen Gesundheitszustand von Individuen ermöglichen könnten. Wir verwendeten einen Modellselektionsansatz, um zu prüfen, ob der Plasmaspiegel an Glucocorticoiden bei der Zwergdrossel (Catharus ustulatus) mit zwei Kenngrößen zusammenhängt, welche möglicherweise die Bruthabitatqualität wirtschaftlich genutzter Nadelwälder widerspiegeln könnten, nämlich Bestandsalter und Vegetationsbedeckung. Im Falle des Corticosteron-Grundspiegels beinhaltete das beste Modell das Bestandsalter und es gab eine eingeschränkte Bestätigung für Modelle, die die Vegetationsbedeckung berücksichtigten. Der durchschnittliche Grundspiegel an Corticosteron lag bei territorialen Zwergdrossel-Männchen in gereiften Wäldern um 78.2 % höher als in Proben von territorialen Männchen aus frühen Waldstadien. Im Falle des durch Eingriffe induzierten Corticosteronspiegels ließen sich die Kandidatenmodelle nur begrenzt auftrennen und nur für ein Modell, das Bestandsalter und die Julianische Tageszahl beinhaltete, ergab sich eine stärkere Bestätigung als für das Nullhypothese-Modell. Obwohl in früheren Studien gezeigt wurde, dass die Bedeckung mit Hartholzvegetation ein wichtiger Bestandteil der Bruthabitatqualität für die Drosseln ist, ergab sich in unserer Untersuchung nur ein schwacher Zusammenhang zwischen der Vegetationsbedeckung einerseits und dem basalen oder dem durch Eingriffe induzierten Corticosteronspiegel. In Anbetracht dessen, dass Frühstadien und Reifestadien von Koniferenwäldern sich durch deutlich verschiedene Habitatmerkmale auszeichnen, stellen wir die Hypothese auf, dass die beobachteten Unterschiede im basalen Corticosteronspiegel entweder eine geringere Fitness der Drosselmännchen in älteren Waldbeständen widerspiegeln, oder aber eine adaptive Anpassung des Glucocorticoidspiegels an die lokalen Umweltbedingungen darstellt, welche zu einer ausgeglichenen Fitness in Waldbeständen verschiedenen Alters führt.

References

  1. Adams WT, Hobbs S, Johnson N (2005) Intensively managed forest plantations in the Pacific Northwest: introduction. J For 103:59–60Google Scholar
  2. Angelier F, Tonra CM, Holberton RL, Marra PP (2010) How to capture wild passerine species to study baseline corticosterone levels. J Ornithol 151:415–422CrossRefGoogle Scholar
  3. Betts MG, Hagar JC, Rivers JW, Alexander JD, McGarigal K, McComb BC (2010) Thresholds in forest bird occurrence as a function of the amount of early-seral broadleaf forest at landscape scales. Ecol Appl 20:2116–2130PubMedCrossRefGoogle Scholar
  4. Betts MG, Verschuyl J, Giovanini J, Stokely T, Kroll AJ (2013) Initial experimental effects of intensive forest management on avian abundance. For Ecol Manag 310:1036–1044Google Scholar
  5. Bonier F, Martin PR, Moore I, Wingfield JC (2009a) Do baseline glucocorticoids predict fitness? Trends Ecol Evol 24:634–642PubMedCrossRefGoogle Scholar
  6. Bonier F, Moore IT, Martin PR, Robertson RJ (2009b) The relationship between fitness and baseline glucocorticoids in a passerine bird. Gen Comp Endocrinol 163:208–213PubMedCrossRefGoogle Scholar
  7. Bonier F, Moore IT, Robertson RJ (2011) The stress of parenthood? Increased glucocorticoids in birds with experimentally enlarged broods. Biol Lett 7:944–946PubMedCentralPubMedCrossRefGoogle Scholar
  8. Breuner CW, Lynn SE, Julian GE, Cornelius JM, Heidinger BJ, Love OP, Sprague RS, Wada H, Whitman BA (2006) Plasma-binding globulins and acute stress response. Horm Metab Res 38:260–268PubMedCrossRefGoogle Scholar
  9. Breuner CW, Patterson SH, Hahn TP (2008) In search of relationships between the acute adrenocortical response and fitness. Gen Comp Endocrinol 157:288–295PubMedCrossRefGoogle Scholar
  10. Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17:925–951CrossRefGoogle Scholar
  11. Busch DS, Hayward LS (2009) Stress in a conservation context: a discussion of glucocorticoid actions and how levels changes with conservation-relevant variables. Biol Conserv 142:2844–2853CrossRefGoogle Scholar
  12. Cahall RE, Hayes JP, Betts MB (2013) Will they come? Long-term response by forest birds to experimental thinning supports the “Field of Dreams” hypothesis. For Ecol Manag 304:137–149CrossRefGoogle Scholar
  13. Carnus JM, Parrotta J, Brockerhoff E, Arbez M, Jactel H, Kremer A, Lamb D, O’Hara K, Walters B (2006) Planted forests and biodiversity. J For 104:65–77Google Scholar
  14. Easton WE, Martin K (1998) The effect of vegetation management on breeding bird communities in British Columbia. Ecol Appl 8:1092–1103CrossRefGoogle Scholar
  15. Easton WE, Martin K (2002) Effects of thinning and herbicide treatments on nest-site selection by songbirds in young managed stands. Auk 119:685–694Google Scholar
  16. Ellis TM, Betts MG (2011) Bird abundance and diversity across a hardwood gradient within early seral plantation forest. For Ecol Manag 261:1372–1381CrossRefGoogle Scholar
  17. Ellis TM, Kroll AJ, Betts MG (2012) Early seral hardwood vegetation increases adult and fledgling bird abundance in Douglas-fir plantations of the Oregon Coast Range, USA. Can J For Res 42:918–933CrossRefGoogle Scholar
  18. Hagar JC (2007) Wildlife species associated with non-coniferous vegetation in Pacific Northwest conifer forests: a review. For Ecol Manag 246:108–122CrossRefGoogle Scholar
  19. Hansen AJ, McComb WC, Vega R, Raphael MG, Hunter M (1995) Bird habitat relationships in natural and managed forests in the West Cascades of Oregon. Ecol Appl 5:555–569CrossRefGoogle Scholar
  20. Hayes JP, Schoenholtz SH, Hartley MJ, Murphy G, Powers RF, Berg D, Radosevich SR (2005) Environmental consequences of intensively managed forest plantations in the Pacific Northwest. J For 103:83–87Google Scholar
  21. Holberton RL, Wingfield JC (2003) Modulating the corticosterone stress response: a mechanism for balancing individual risk and reproductive success in arctic-breeding sparrows. Auk 120:1140–1150CrossRefGoogle Scholar
  22. Jenkins SR, Betts MG, Huso MM, Hagar JC (2013) Habitat selection by juvenile Swainson’s thrushes (Catharus ustulatus) in headwater riparian areas, Northwestern Oregon, USA. For Ecol Manag 305:88–95CrossRefGoogle Scholar
  23. Kennedy RSH, Spies TA (2005) Dynamics of hardwood patches in a conifer matrix: 54 years of change in a forested landscape in Coastal Oregon, USA. Biol Conserv 122:363–374CrossRefGoogle Scholar
  24. Kuhlman JR, Martin LB (2010) Captivity affects immune redistribution to skin in a wild bird. Funct Ecol 24:830–837CrossRefGoogle Scholar
  25. Leshyk R, Nol E, Burke DM, Burness G (2012) Logging affects fledgling sex ratios and baseline corticosterone in a forest songbird. PLoS ONE 7:e33124PubMedCentralPubMedCrossRefGoogle Scholar
  26. Lindenmayer DB (2009) Forest wildlife management and conservation. Ann NY Acad Sci 1162:284–310PubMedCrossRefGoogle Scholar
  27. Mack DE, Yong W (2000) Swainson’s Thrush (Catharus ustulatus). In: Poole A (ed) The Birds of North America Online. Cornell Lab of Ornithology, IthacaGoogle Scholar
  28. McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43:2–15PubMedCrossRefGoogle Scholar
  29. McEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH, Dhabhar FS, Goldfarb RG, Kitson RP, Miller AH, Spencer RL, Weiss JM (1997) The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine, and immune interactions. Brain Res Rev 23:79–133PubMedCrossRefGoogle Scholar
  30. McGarigal K, McComb WC (1995) Relationships between landscape structure and breeding birds in the Oregon Coast Range. Ecol Monogr 65:235–260CrossRefGoogle Scholar
  31. Moore IT, Jessop TS (2003) Stress, reproduction, and adrenocortical modulation in amphibians and reptiles. Horm Behav 43:39–47PubMedCrossRefGoogle Scholar
  32. Muller C, Jenni-Eiermann S, Blondel J, Perret P, Caro SP, Lambrechts MM, Jenni L (2007) Circulating corticosterone levels in breeding blue tits Parus caeruleus differ between island and mainland populations and between habitats. Gen Comp Endocrinol 154:128–136PubMedCrossRefGoogle Scholar
  33. Ouyang JQ, Sharp PJ, Dawson A, Quetting M, Hau M (2011) Hormone levels predict individual differences in reproductive success in a passerine bird. Proc R Soc Lond B 278:2537–2545CrossRefGoogle Scholar
  34. Ritchie LE, Betts MG, Forbes G, Vernes K (2009) Effects of landscape composition and configuration on northern flying squirrels in a forest mosaic. For Ecol Manag 257:1920–1929CrossRefGoogle Scholar
  35. Rivers JW, Liebl AL, Owen JC, Martin LB, Betts MG (2012) Baseline corticosterone is positively related to juvenile survival in a migrant passerine bird. Funct Ecol 26:1127–1134CrossRefGoogle Scholar
  36. Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255PubMedCrossRefGoogle Scholar
  37. Romero LM, Reed JM (2005) Collecting baseline corticosterone samples in the field: is under 3 min good enough? Comp Biochem Physiol A 140:73–79CrossRefGoogle Scholar
  38. Romero LM, Romero RC (2002) Corticosterone responses in wild birds: the importance of rapid initial sampling. Condor 104:129–135CrossRefGoogle Scholar
  39. Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389PubMedCrossRefGoogle Scholar
  40. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89PubMedGoogle Scholar
  41. Sauer JR, Hines JE, Fallon JE, Pardieck KL, Ziolkowski DJ, Link WA (2012) The North American breeding bird survey, results and analysis 1966–2011. Version 12.13.2011 USGS Patuxent Wildlife Research Center, Laurel, MDGoogle Scholar
  42. Shepard JP, Creighton J, Duzan H (2004) Forestry herbicides in the United States: an overview. Wildl Soc Bull 32:1020–1027CrossRefGoogle Scholar
  43. Shepherd KR (1993) Significance of plantations in a global forestry strategy. Aust For 56:237–335CrossRefGoogle Scholar
  44. Silverin B (1998) Territorial behavior and hormones of pied flycatchers in optimal and suboptimal habitats. Anim Behav 56:811–818PubMedCrossRefGoogle Scholar
  45. Suorsa P, Huhta E, Nikula A, Nikinmaa M, Jantti A, Helle H, Hakkarainen H (2003) Forest management is associated with physiological stress in an old-growth forest passerine. Proc R Soc Lond B 270:963–969CrossRefGoogle Scholar
  46. van Duyse E, Pinxten R, Darras VM, Arckens L, Eens M (2004) Opposite changes in plasma testosterone and corticosterone levels following a simulated territorial challenge in male Great Tits. Behaviour 141:451–467CrossRefGoogle Scholar
  47. Wada H (2008) Glucocorticoids: mediators of vertebrate ontogenetic transitions. Gen Comp Endocr 156:441–453PubMedCrossRefGoogle Scholar
  48. White JD, Gardali T, Thompson FR III, Faaborg J (2005) Resource selection by juvenile Swainson’s thrushes during the postfledging period. Condor 107:388–401CrossRefGoogle Scholar
  49. Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46PubMedCrossRefGoogle Scholar
  50. Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724PubMedCrossRefGoogle Scholar
  51. Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone-behavior interactions: the “emergency life history stage”. Am Zool 38:191–206Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • James W. Rivers
    • 1
  • Andrea L. Liebl
    • 2
  • Lynn B. Martin
    • 2
  • Matthew G. Betts
    • 1
  1. 1.Department for Forest Ecosystems and SocietyOregon State UniversityCorvallisUSA
  2. 2.Department of Integrative BiologyUniversity of South FloridaTampaUSA

Personalised recommendations