Advertisement

Journal of Ornithology

, Volume 155, Issue 2, pp 507–518 | Cite as

Habitat use and diet of Skylarks (Alauda arvensis) wintering in an intensive agricultural landscape of the Netherlands

  • Flavia Geiger
  • Arne Hegemann
  • Maurits Gleichman
  • Heiner Flinks
  • Geert R. de Snoo
  • Sebastian Prinz
  • B. Irene Tieleman
  • Frank Berendse
Original Article

Abstract

In recent decades, Skylark (Alauda arvensis) populations in Europe have declined sharply due to agricultural intensification. Insufficient reproduction rates are one reason. Increased winter mortality may also be important, but studies outside the breeding season are scarce and mostly limited to the UK. We studied habitat selection of wintering Skylarks in an agricultural area in the Netherlands. We monitored Skylarks between November 2008 and March 2009 on 10 survey plots including 77 different arable fields and permanent grasslands and covering in total 480 ha. We simultaneously measured food availability, vegetation structure and field boundary characteristics. We also analysed 158 faecal pellets collected on potato and cereal stubble fields to relate Skylark diet to seasonal changes in food availability and foraging habitat. We show that cereal stubble fields larger than 4.3 ha, surrounded by no or low boundary vegetation and a density of dietary seeds of more than 860 seeds m−2, were most suitable for wintering Skylarks. Skylark group densities were low on permanent grasslands and on maize stubble fields. Densities of dietary seeds were highest in soils of potato stubble fields followed by cereal stubble fields, grasslands and maize stubble fields. Skylarks showed a strong preference for cereal grains, but their proportion in the diet fell sharply at the end of November, indicating that cereal grains were depleted and birds had to switch to less profitable food sources, such as weed seeds and leaves. We conclude that Skylarks wintering in agricultural landscapes possibly suffer from a lack of energy-rich food sources and only a few fields provide sufficient food. Conservation measures should strive to improve the wintering situation by creating food-rich habitats such as over-winter stubble with a rich layer of weeds on large fields and localised in open areas.

Keywords

Nutrition Energy intake Droppings Predation risk Winter ecology Non-breeding 

Zusammenfassung

Habitatwahl und Nahrung von überwinternden Feldlerchen ( Alauda arvensis ) in einer intensiv genutzten Agrarlandschaft der Niederlande

In den vergangenen Jahrzehnten sind die europäischen Bestände der Feldlerche (Alauda arvensis) durch die Intensivierung der Landwirtschaft stark zurückgegangen. Geringe Fortpflanzungsraten sind ein Grund. Eine angestiegene Wintersterblichkeit ist vermutlich ebenfalls von Bedeutung, allerdings gibt es nur sehr wenige Studien außerhalb der Brutsaison und die wenigen sind zudem fast ausnahmslos auf Großbritannien beschränkt. Wir untersuchten die Habitatwahl von Feldlerchen in einer niederländischen Agrarlandschaft. Von November 2008 bis März 2009 zählten wir Feldlerchen auf 10 Probeflächen, die 77 verschiedene Felder und Grasländer und insgesamt 480 ha umfassten. Gleichzeitig erfassten wir die Nahrungsverfügbarkeit, die Vegetationsstruktur und Feldrandcharakteristika. Außerdem sammelten wir auf Getreidestoppelfeldern und ehemaligen Kartoffelfeldern insgesamt 158 Kotproben um die Nahrungszusammensetzung der Feldlerchen zu bestimmen. Diese setzten wir in Relation zum Nahrungsangebot und zum Habitat. Wir zeigen, dass Getreidestoppelfelder die grösser als 4.3 ha sind, kaum vertikale Randstrukturen aufweisen und mehr als 860 Samenkörner pro Quadratmeter aufweisen, bevorzugt von überwinternden Feldlerchen genutzt werden. Auf intensivem Dauergrünland und auf Maisstoppeln fanden wir nur geringe Dichten überwinternder Feldlerchen. Die Dichte von Samenkörnern, die als Nahrung von Feldlerchen dienten, war am höchsten auf vormaligen Kartoffeläckern, gefolgt von Getreidestoppelfeldern, Grünland und Maisstoppelfeldern. Feldlerchen zeigten eine starke Bevorzugung von Getreidekörnern als Nahrung, jedoch nahm deren Anteil in der Nahrung Ende November stark ab. Dies deutet darauf hin, dass bereits dann keine Getreidekörner mehr vorhanden waren und Feldlerchen auf weniger profitable Nahrungsquellen wechseln müssen, z.B. Samenkörner und Blätter von aufkommenden Wildkräutern. Wir folgern, dass überwinternde Feldlerchen in einer intensiven Agrarlandschaft vermutlich einen Mangel an energiereicher Nahrung haben und nur sehr wenige Felder im Winter als Winterhabitat geeignet sind und ausreichend Nahrung bieten. Schutzmaßnahmen sollten darauf abzielen die Wintersituation zu verbessern. Wir empfehlen die Anlage nahrungsreicher Flächen wie zum Beispiel überwinternde Stoppelfelder. Diese sollten nicht mit Herbiziden behandelt werden, sondern eine reichhaltige Krautschicht zulassen. Außerdem sollten sie in einer offenen Landschaft und mit Abstand zu vertikalen Strukturen liegen.

Notes

Acknowledgments

We thank all the farmers and ‘Het Drentse Landschap’ who allowed fieldwork on their land. Herman van Oeveren (Resource Ecology, Wageningen University) kindly helped with the identification of weed seeds. The manuscript benefited from useful comments by two anonymous reviewers. This study was funded by the Netherlands Organization for Scientific Research.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10336_2013_1033_MOESM1_ESM.doc (78 kb)
Supplementary material 1 (DOC 78 kb)

References

  1. Attwood SJ, Maron M, House APN, Zammit C (2008) Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob Ecol Biogeogr 17:585–599CrossRefGoogle Scholar
  2. Benton TG, Bryant DM, Cole L, Crick HQP (2002) Linking agricultural practice to insect and bird populations: a historical study over three decades. J Appl Ecol 39:673–687CrossRefGoogle Scholar
  3. Benton T, Vickery J, Wilson J (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  4. Billeter R, Liira J, Bailey D et al (2008) Indicators for biodiversity in agricultural landscapes: a pan-European study. J Appl Ecol 45:141–150CrossRefGoogle Scholar
  5. BirdLife International (2004) Birds in Europe: populations estimates, trends and conservation status. BirdLife International, CambridgeGoogle Scholar
  6. Bos J, Koks B, Kragten S, Schroeder J (2009) Akkervogels alleen te redden met een koerswijziging van het Gemeenschappelijk Landbouwbeleid. De Levende Natuur 110:192–197Google Scholar
  7. Bos JFFP, Sierdsema H, Schekkerman H, van Scharenburg CWM (2010) Een Veldleeuwerik zingt niet voor niets! Schatting van kosten van maatregelen voor akkervogels in de context van een veranderend Gemeeschappelijk Landbouwbeleid. WOt rapport 107. Wettelijke Onderzoekstaken Natuur & Milleu, WageningenGoogle Scholar
  8. Bradbury RB, Bailey CM, Wright D, Evans AD (2008) Wintering Cirl Buntings Emberiza cirlus in southwest England select cereal stubbles that follow a low-input herbicide regime. Bird Study 55:23–31CrossRefGoogle Scholar
  9. Butler SJ, Bradbury RB, Whittingham MJ (2005) Stubble height affects the use of stubble fields by farmland birds. J Appl Ecol 42:469–476CrossRefGoogle Scholar
  10. Calver MC, Wooller RD (1982) A technique assessing the taxa, length, dry weight and energy content of the arthropod prey of birds. Aust Wildl Res 9:293–301CrossRefGoogle Scholar
  11. Chamberlain DE, Crick HQP (1999) Population declines and reproductive performance of Skylarks Alauda arvensis in different regions and habitats of the United Kingdom. Ibis 141:38–51CrossRefGoogle Scholar
  12. Chamberlain DE, Vickery JA, Gough S (2000a) Spatial and temporal distribution of breeding skylarks Alauda arvensis in relation to crop type in periods of population increase and decrease. Ardea 88:61–73Google Scholar
  13. Chamberlain D, Fuller R, Bunce R, Duckworth J, Shrubb M (2000b) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J Appl Ecol 37:771–788CrossRefGoogle Scholar
  14. Cramp S (1988) The birds of the Western Palearctic, vol 5. Oxford University Press, OxfordGoogle Scholar
  15. Donald PF (2004) The skylark. T & A D Poyser, LondonGoogle Scholar
  16. Donald PF, Morris TJ (2005) Saving the Sky Lark: new solutions for a declining farmland bird. Br Birds 98:570–578Google Scholar
  17. Donald PF, Buckingham DL, Moorcroft D, Muirhead LB, Evans AD, Kirby WB (2001) Habitat use and diet of skylarks Alauda arvensis wintering on lowland farmland in southern Britain. J Appl Ecol 38:536–547CrossRefGoogle Scholar
  18. Donald PF, Evans AD, Muirhead LB, Buckingham DL, Kirby WB, Schmitt SIA (2002) Survival rates, causes of failure and productivity of Skylark Alauda arvensis nests on lowland farmland. Ibis 144:652–664CrossRefGoogle Scholar
  19. Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196CrossRefGoogle Scholar
  20. European Bird Census Council (EBCC) (2009) European wild bird indicators, 2009 updateGoogle Scholar
  21. Flade M (2012) Von der Energiewende zum Biodiversitäts-Desaster—zur Lage des Vogelschutzes in Deutschland. Vogelwarte 133:149–158Google Scholar
  22. Flinks H, Pfeifer F (1987) Nahrung adulter und nestjunger Schwarzkehlchen (Saxicola torquata rubicola) einer westfälischen Brutpopulation. Vogelwelt 108:41–57Google Scholar
  23. Geiger F, Bengtsson J, Berendse F et al (2010) Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl Ecol 11:97–105CrossRefGoogle Scholar
  24. Gillings S, Fuller RJ (2001) Habitat selection by Skylarks Alauda arvensis wintering in Britain in 1997/1998. Bird Study 48:293–307CrossRefGoogle Scholar
  25. Green R (1978) Factors affecting diet of Farmland Skylarks, Alauda arvensis. J Anim Ecol 47:913–928CrossRefGoogle Scholar
  26. Hancock MH, Wilson JD (2003) Winter habitat associations of seed-eating passerines on Scottish farmland. Bird Study 50:116–130CrossRefGoogle Scholar
  27. Hegemann A, van der Jeugd HP, de Graaf M, Oostebrink LL, Tieleman BI (2010) Are Dutch Skylarks partial migrants? Ring recovery data and radio-telemetry suggest local coexistence of contrasting migration strategies. Ardea 98:135–143CrossRefGoogle Scholar
  28. Hegemann A, Matson KD, Versteegh MA, Tieleman BI (2012a) Wild skylarks seasonally modulate energy budgets but maintain energetically costly inflammatory immune responses throughout the annual cycle. PLoS ONE 7:e36358PubMedCentralPubMedCrossRefGoogle Scholar
  29. Hegemann A, Matson KD, Both C, Tieleman BI (2012b) Immune function in a free-living bird varies over the annual cycle, but seasonal patterns differ between years. Oecologia 170:605–618PubMedCentralPubMedCrossRefGoogle Scholar
  30. Hodar JA (1996) The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecol 17:421–433Google Scholar
  31. Hof AR, Bright PW (2010) The impact of grassy field margins on macro-invertebrate abundance in adjacent arable fields. Agric Ecosyst Environ 139:280–283CrossRefGoogle Scholar
  32. Jenni L, Reutimann P, Jenni-Eiermann S (1990) Recognizability of different food types in faeces and in alimentary flushes of Sylvia warblers. Ibis 132:445–453CrossRefGoogle Scholar
  33. Jenny M (1990) Nahrungsökologie der Feldlerche Alauda arvensis in einer intensiv genutzten Agrarlandschaft des schweizerischen Mittellandes. Orn Beob 87:31–53Google Scholar
  34. Kragten S, Koks B (2011) Reactie op Wat kost het behoud van onze akkervogels? (Bos et al. 2010). De Levende Natuur 112:30–31Google Scholar
  35. Kragten S, Tamis WLM, Gertenaar E, Ramiro SMM, Van der Poll RJ, Wang J, De Snoo GR (2011) Abundance of invertebrate prey for birds on organic and conventional arable farms in the Netherlands. Bird Conserv Int 21:1–11CrossRefGoogle Scholar
  36. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation—a review and prospectus. Can J Zool 68:619–640CrossRefGoogle Scholar
  37. Marshall E, Arnold G (1995) Factors affecting field weed and field margin flora on a farm in Essex, UK. Landsc Urban Plan 31:205–216CrossRefGoogle Scholar
  38. Moorcroft D, Whittingham MJ, Bradbury RB, Wilson JD (2002) The selection of stubble fields by wintering granivorous birds reflects vegetation cover and food abundance. J Appl Ecol 39:535–547CrossRefGoogle Scholar
  39. Newton I (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146:579–600CrossRefGoogle Scholar
  40. Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Glaser AI, Channing IC, Welhams SJ, Gilmour AR, Thomposon R, Webster R (2008) The guide to GenStat release 11: part 2: statistics. VSN International, Hemel HempsteadGoogle Scholar
  41. PECBMS (2012) Trends of common birds in Europe, 2012 update. CSO/RSBP, PragueGoogle Scholar
  42. Perkins AJ, Maggs HE, Wilson JD (2008) Winter bird use of seed-rich habitats in agri-environment schemes. Agric Ecosyst Environ 126:189–194CrossRefGoogle Scholar
  43. Ralph CP, Nagata SE, Ralph CJ (1985) Analysis of droppings to describe diets of small birds. J Field Ornithol 56:165–174Google Scholar
  44. Robinson R, Sutherland W (1999) The winter distribution of seed-eating birds: habitat structure, seed density and seasonal depletion. Ecography 22:447–454CrossRefGoogle Scholar
  45. Rogers LM, Gorman ML (1995) The diet of the wood mouse Apodemus sylvaticus on set-aside land. J Zool 235:77–83CrossRefGoogle Scholar
  46. Siriwardena GM, Stevens DK, Anderson GQA, Vickery JA, Calbrade NA, Dodd S (2007) The effect of supplementary winter seed food on breeding populations of farmland birds: evidence from two large-scale experiments. J Appl Ecol 44:920–932CrossRefGoogle Scholar
  47. Siriwardena GM, Calbrade NA, Vickery JA (2008) Farmland birds and late winter food: does seed supply fail to meet demand? Ibis 150:585–595CrossRefGoogle Scholar
  48. SOVON (2012) Vogelbalans 2012—thema boerenland. Sovon Vogelonderzoek Nederland, NijmegenGoogle Scholar
  49. Stoate C, Boatman N, Borralho R, Carvalho C, de Snoo G, Eden P (2001) Ecological impacts of arable intensification in Europe. J Environ Manag 63:337–365CrossRefGoogle Scholar
  50. Sutherland WJ, Pullin AS, Dolman PM, Knight TM (2004) The need for evidence-based conservation. Trends Ecol Evol 19:305–308PubMedCrossRefGoogle Scholar
  51. Teunissen W, Ottens H-, Roodbergen M, Koks B (2009) Veldleeuweriken in intensief en extensief gebruikt agrarisch gebied. SOVON-onderzoeksrapport 2009/13. SOVON, NijmegenGoogle Scholar
  52. Wakeham-Dawson A, Aebischer NJ (1998) Factors determining winter densities of birds on environmentally sensitive area arable reversion grassland in southern England, with special reference to skylarks (Alauda arvensis). Agric Ecosyst Environ 70:189–201CrossRefGoogle Scholar
  53. Whittingham MJ, Markland HM (2002) The influence of substrate on the functional response of an avian granivore and its implications for farmland bird conservation. Oecologia 130:637–644CrossRefGoogle Scholar
  54. Whittingham MJ, Devereux CL, Evans AD, Bradbury RB (2006) Altering perceived predation risk and food availability: management prescriptions to benefit farmland birds on stubble fields. J Appl Ecol 43:640–650CrossRefGoogle Scholar
  55. Wilson PJ, Aebischer NJ (1995) The distribution of dicotyledonous arable weeds in relation to distance from the field edge. J Appl Ecol 32:295–310CrossRefGoogle Scholar
  56. Wilson JD, Taylor R, Muirhead LB (1996) Field use by farmland birds in winter: an analysis of field type preferences using resampling methods. Bird Study 43:320–332CrossRefGoogle Scholar
  57. Wilson JD, Evans J, Browne SJ, King JR (1997) Territory distribution and breeding success of skylarks Alauda arvensis on organic and intensive farmland in southern England. J Appl Ecol 34:1462–1478CrossRefGoogle Scholar
  58. Wilson JD, Morris AJ, Arroyo BE, Clark SC, Bradbury RB (1999) A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric Ecosyst Environ 75:13–30CrossRefGoogle Scholar
  59. Wolfenden IH, Peach WJ (2001) Temporal changes in the survival rates of Skylarks Alauda arvensis breeding in duneland in northwest England. In: Donald PF, Vickery JA (eds) The ecology and conservation of Skylarks Alauda arvensis. RSPB, Sandy, pp 79–89Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Flavia Geiger
    • 1
  • Arne Hegemann
    • 2
  • Maurits Gleichman
    • 1
  • Heiner Flinks
    • 4
  • Geert R. de Snoo
    • 1
    • 3
  • Sebastian Prinz
    • 1
  • B. Irene Tieleman
    • 2
  • Frank Berendse
    • 1
  1. 1.Nature Conservation and Plant Ecology GroupWageningen UniversityWageningenThe Netherlands
  2. 2.Animal Ecology, Centre for Ecological and Evolutionary StudiesUniversity of GroningenGroningenThe Netherlands
  3. 3.Institute of Environmental SciencesLeiden UniversityLeidenThe Netherlands
  4. 4.BorkenGermany

Personalised recommendations