Journal of Ornithology

, Volume 155, Issue 2, pp 411–420 | Cite as

Nest predation in Afrotropical forest fragments shaped by inverse edge effects, timing of nest initiation and vegetation structure

  • Toon Spanhove
  • Tom Callens
  • Caspar A. Hallmann
  • Petri Pellikka
  • Luc Lens
Original Article

Abstract

High levels of nest predation influence the population dynamics of many tropical birds, especially when deforestation alters nest predator communities. The consequences of tropical forest fragmentation on nest predation, however, remain poorly understood, as natural predation patterns have only been well documented in a handful of tropical forests. Here, we show the results of an extensive study of predation on natural nests of Cabanis’s Greenbul (Phyllastrephus cabanisi) during 3 years in a highly fragmented cloud forest in SE Kenya. Overall predation rates derived from 228 scrub nests averaged 69 %, matching the typical high predation level on tropical bird species. However, predation rates strongly varied in space and time, and a model that combined timing effects of fragment, edge, concealment, year and nest was best supported by our data. Nest predation rates consistently increased from forest edge to interior, opposing the classic edge effect on nest predation, and supporting the idea that classic edge effects are much rarer in Afrotropical forests than elsewhere. Nest concealment also affected predation rates, but the strength and direction of the relationship varied across breeding seasons and fragments. Apart from spatial variation, predation rates declined during the breeding season, although the strength of this pattern varied among breeding seasons. Complex and variable relationships with nest predation, such as those demonstrated here, suggest that several underlying mechanisms interact and imply that fixed nesting strategies may have variable—even opposing—fitness effects between years, sites and habitats.

Keywords

Tropical birds Habitat fragmentation Nest success Taita Hills Phyllastrephus cabanisi placidus 

Zusammenfassung

Die Nestprädation in afrotropischen Waldfragmenten ist von inversen Randeffekten, dem Zeitpunkt des Nestbeginns und der Vegetationsstruktur bestimmt

Ein hohes Nestprädationsniveau beeinflusst die Populationsdynamik vieler tropischer Vögel, besonders wenn die Nesträubergemeinschaften durch Abholzung des Waldes verändert werden. Die Folgen der Fragmentierung tropischer Wälder für die Nestprädation sind jedoch kaum verstanden, da natürliche Prädationsmuster nur in einer Handvoll tropischer Wälder gut dokumentiert sind. Hier zeigen wir die Ergebnisse einer umfassenden dreijährigen Studie zur Prädation an natürlichen Nestern des Cabanis-Bülbül (Phyllastrephus cabanisi) in einem stark fragmentierten Nebelwald in Südostkenia. Insgesamt betrug die durchschnittliche Prädationsrate an 228 Nestern im Buschwerk 69 %, was dem typischerweise hohen Prädationsniveau bei tropischen Vogelarten entspricht. Die Prädationsraten variierten jedoch stark in Raum und Zeit, und ein mathematisches Modell, das Waldfragment-, Rand-, Nesttarnungs-, Jahres- und Nistzeitpunkteffekte kombinierte, wurde von unseren Daten am besten unterstützt. Die Nestprädationsraten stiegen beständig vom Waldrand zum Inneren des Waldes hin, was dem typischen Randeffekt auf Nestprädation entgegensteht und die Idee stützt, dass klassische Randeffekte in afrotropischen Wäldern viel seltener sind als anderswo. Die Tarnung des Nestes beeinflusste ebenfalls die Prädationsraten, aber die Stärke und Richtung der Beziehung variierte zwischen Brutsaisons und Waldfragmenten. Abgesehen von räumlicher Variation nahmen die Prädationsraten im Verlauf der Brutsaison ab, obwohl die Stärke dieses Musters zwischen Brutsaisons variierte. Komplexe und variable Beziehungen mit Nestprädation, so wie hier gezeigt, deuten darauf hin, dass mehrere zugrunde liegende Mechanismen zusammenwirken, und implizieren, dass starre Niststrategien variable und sogar gegensätzliche Fitnesseffekte zwischen Jahren, Standorten und Habitaten haben können.

Notes

Acknowledgments

We thank A. Callens, M. Chovu, L. Chovu, P. Kafusi, N. Mkombola, A. Mwakumba, I. Mwashighadi, S. Piirainen and L. Wagura for field assistance, H. Matheve for GIS mapping and C. Vangestel for statistical assistance, A. Cox and three anonymous reviewers commented on earlier versions of this manuscript. T.S. was a research assistant of the Research Foundation-Flanders and T.C. got a doctoral grant from the Flemish Agency for Innovation by Science and Technology. Fieldwork was funded by research grants G.0055.08 (to L.L.), G.0149.09 (to S. Van Dongen) and WO.037.10 N (to F. Volckaert) of the Research Foundation-Flanders and by small grants of the Leopold III Foundation and the Foundation for Scientific Research in Africa (to T.C.). The research was approved by the Kenyan government (MOEST Ref. No. 13/001/36) and comply with the current laws in Kenya.

Supplementary material

10336_2013_1021_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)

References

  1. Aerts R, Thijs KW, Lehouck V, Beentje H, Bytebier B, Matthysen E, Gulinck H, Lens L, Muys B (2011) Woody plant communities of isolated Afromontane cloud forests in Taita Hills, Kenya. Plant Ecol 212:639–649CrossRefGoogle Scholar
  2. Andrén H, Angelstam P (1988) Elevated predation rates as an edge effect on habitat islands: experimental evidence. Ecology 69:544–547CrossRefGoogle Scholar
  3. Bartón K (2012) MuMIn—R package for model selection and multi-model inference. http://mumin.r-forge.r-project.org/MuMIn-manual.pdf. Accessed 1 June 2012
  4. Batáry P, Báldi A (2004) Evidence of an edge effect on avian nest success. Conserv Biol 18:389–400CrossRefGoogle Scholar
  5. Beentje HJ (1987) An ecological and floristic study of the forests of the Taita hills, Kenya. Utafiti 1:23–66Google Scholar
  6. Bennun L, Dranzoa C, Pomeroy D (1996) The forest birds of Kenya and Uganda. J East Afr Nat Hist Soc 85:23–48CrossRefGoogle Scholar
  7. Brawn JD, Angehr G, Davros N, Robinson WD, Styrsky JN, Tarwater CE (2011) Sources of variation in the nesting success of understory tropical birds. J Avian Biol 42:61–68CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd edn. Springer, New YorkGoogle Scholar
  9. Callens T (2012) Genetic and demographic signatures of population fragmentation in a cooperatively-breeding forest bird from south-east Kenya. PhD dissertation Ghent University, ZelzateGoogle Scholar
  10. Callens T, Galbusera P, Matthysen E, Durand EY, Githiru M, Huyghe JR, Lens L (2011) Genetic signature of population fragmentation varies with mobility in seven bird species of a fragmented Kenyan cloud forest. Mol Ecol 20:1829–1844PubMedCrossRefGoogle Scholar
  11. Carlson A, Hartman G (2001) Tropical forest fragmentation and nest predation an experimental study in an Eastern Arc montane forest, Tanzania. Biodivers Conserv 10:1077–1085CrossRefGoogle Scholar
  12. Caro TM (2005) Antipredator defenses in birds and mammals. University of Chicago Press, ChicagoGoogle Scholar
  13. Chalfoun AD, Thompson FR, Ratnaswamy MJ (2002) Nest predators and fragmentation: a review and meta-analysis. Conserv Biol 16:306–318CrossRefGoogle Scholar
  14. Chege J, Bytebier B (2005) Vegetation structure of four small forest fragments in Taita Hills, Kenya. J East Afr Nat Hist 94:231–234CrossRefGoogle Scholar
  15. Clark BJF, Pellikka PKE (2009) Landscape analysis using multiscale segmentation and object-oriented classification. In: Röder A, Hill J (eds) Recent advanced in remote sensing and geoinformation processing for land degradation assessment., ISPRS book series 8, Taylor & Francis, London, pp 323–342Google Scholar
  16. Colombelli–Négrel D, Kleindorfer S (2009) Nest height, nest concealment, and predator type predict nest predation in superb fairy–wrens (Malurus cyaneus). Ecol Res 24:921–928CrossRefGoogle Scholar
  17. Cox WA, Thomson FR III, Faaborg J (2012a) Landscape forest cover and edge effects on songbird nest predation vary by nest predator. Landsc Ecol 27:659–669CrossRefGoogle Scholar
  18. Cox WA, Thomson FR III, Faaborg J (2012b) Species and temporal factors affect predator-specific rates of nest predation for forest songbirds in the Midwest. Auk 129:147–155CrossRefGoogle Scholar
  19. Crooks KR, Soulé ME (1999) Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400:563–566CrossRefGoogle Scholar
  20. Gates JE, Gysel LW (1978) Avian nest dispersion and fledging success in field–forest ecotones. Ecology 59:871–883CrossRefGoogle Scholar
  21. Githiru M, Lens L, Cresswell W (2005) Nest predation in a fragmented Afrotropical forest: evidence from natural and artificial nests. Biol Conserv 123:189–196CrossRefGoogle Scholar
  22. Grant TA, Shaffer TL, Madden EM, Pietz PJ (2005) Time–specific variation in passerine nest survival: new insights into old questions. Auk 122:661–672CrossRefGoogle Scholar
  23. Hanson TR, Newmark WD, Stanley WT (2007) Forest fragmentation and predation on artificial nests in the Usambara mountains, Tanzania. Afr J Ecol 45:499–507CrossRefGoogle Scholar
  24. Ibáñez-Álmano JD, Arco L, Soler M (2012) Experimental evidence for a predation cost of begin using active nests and real chicks. J Ornithol 153:801–807CrossRefGoogle Scholar
  25. Keith S, Urban EK & Fry CH (1992) The birds of Africa, vol. 4. Broadbills to chats. Academic, LondonGoogle Scholar
  26. Kvarnbäck J, Bertsch C, Barreto GR (2008) Nest site selection and nesting success of the yellow-knobbed curassow (Crax daubentoni) in a fragmented landscape in the Venezuelan llanos. Ornitol Neotrop 19:347–352Google Scholar
  27. Lahti DC (2001) The “Edge effect on nest predation” hypothesis after twenty years. Biol Conserv 99:365–374CrossRefGoogle Scholar
  28. Lambert S, Kleindorfer S (2006) Nest concealment but not human visitation predicts predation of New Holland honeyeater nests. Emu 106:63–68CrossRefGoogle Scholar
  29. Lee M, Fahrig L, Freemark K, Currie DJ (2002) Importance of patch scale vs landscape scale on selected forest birds. Oikos 96:110–118CrossRefGoogle Scholar
  30. Lehouck V, Spanhove T, Vangestel C, Cordeiro NJ, Lens L (2009) Does landscape structure affect resource tracking by avian frugivores in a fragmented afrotropical forest? Ecography 32:789–799CrossRefGoogle Scholar
  31. Lovett J (1985) Moist forests of Eastern Tanzania. Swara 8:8–9Google Scholar
  32. Lovett JC, Wasser SK (1993) Biogeography and ecology of the rain forests of eastern Africa. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  33. Low M, Pärt T (2009) Patterns of mortality for each life–history stage in a population of the endangered New Zealand stitchbird. J Anim Ecol 78:761–771PubMedCrossRefGoogle Scholar
  34. Maina GG, Jackson WM (2003) Effects of fragmentation on artificial nest predation in a tropical forest in Kenya. Biol Conserv 111:161–169CrossRefGoogle Scholar
  35. Martin TE (1992) Breeding productivity considerations: what are the appropriate habitat features for management? In: Hagan JM, Johnston DW (eds) Ecology and conservation of Neotropical migrant land birds. Smithsonian Institution, Washington DC, pp 455–473Google Scholar
  36. Martin TE (1993) Nest predation and nest sites—new perspectives on old patterns. Bioscience 43:523–532CrossRefGoogle Scholar
  37. Martin TE (1996) Life history evolution in tropical and south temperate birds: what do we really know? J Avian Biol 27:263–272CrossRefGoogle Scholar
  38. Martin TE, Clobert J (1996) Nest predation and avian life–history evolution in Europe versus North America: a possible role of humans? Am Nat 147:1028–1046CrossRefGoogle Scholar
  39. Martin TE, Roper JJ (1988) Nest predation and nest–site selection of a western population of the hermit thrush. Condor 90:51–57CrossRefGoogle Scholar
  40. Mayfield H (1961) Nesting success calculated from exposure. Wilson Bull 73:255–261Google Scholar
  41. Mezquida ET, Marone L (2001) Factors affecting nesting success of a bird assembly in the central Monte desert, Argentina. J Avian Biol 32:287–296CrossRefGoogle Scholar
  42. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858PubMedCrossRefGoogle Scholar
  43. Newmark WD, Stanley TR (2011) Habitat fragmentation reduces nest survival in an Afrotropical bird community in a biodiversity hotspot. Proc Natl Acad Sci USA 108:11488–11493PubMedCentralPubMedCrossRefGoogle Scholar
  44. Nour N, Matthysen E, D’hondt AA (1993) Artificial nest predator and habitat fragmentation: different trends in bird and mammal predators. Ecography 16:111–116CrossRefGoogle Scholar
  45. Odhiambo RO (2000) An ecological study of Praomys taita (Rodentia: Muridae) and other small rodents in the fragmented forest habitats of the Taita Hills, Kenya. MSc thesis, Kenyatta UniversityGoogle Scholar
  46. Oguge N, Hutterer R, Odhiambo R, Verheyen W (2004) Diversity and structure of shrew communities in montane forests of southeast Kenya. Mamm Biol 69:289–301CrossRefGoogle Scholar
  47. Peak RG (2003) An experimental test of the concealment hypothesis using American goldfinch nests. Wilson Bull 115:403–408CrossRefGoogle Scholar
  48. Peak RG (2007) Forest edges negatively affect golden–cheeked warbler nest survival. Condor 109:628–637CrossRefGoogle Scholar
  49. Peak RG, Thompson FR, Shaffer TL (2004) Factors affecting songbird nest survival in riparian forests in a midwestern agricultural landscape. Auk 121:726–737CrossRefGoogle Scholar
  50. Pellikka PKE, Lotjonen M, Sijander M, Lens L (2009) Airborne remote sensing of spatiotemporal change (1955–2004) in indigenous and exotic forest cover in the Taita Hills, Kenya. Int J Appl Earth Observ Geoinf 11:221–232CrossRefGoogle Scholar
  51. Pfeifer M, Gonsamo A, Disney M, Pellikka P, Marchant R (2011) Leaf area index for biomes of the Eastern Arc Mountains: landsat and SPOT observations along precipitation and altitude gradients. Remote Sensing Environ 118:103–115CrossRefGoogle Scholar
  52. Powell LA (2007) Approximating variance of demographic parameters using the delta method: a reference for avian biologists. Condor 109:949–954CrossRefGoogle Scholar
  53. Redondo T, Castro F (1992) The increase in risk of predation with begging activity in broods of magpies Pica pica. Ibis 134:180–187CrossRefGoogle Scholar
  54. Robinson WD, Sherry TW (2012) Mechanisms of avian population decline and species loss in tropical forest fragments. J Ornithol 153:S141–S152CrossRefGoogle Scholar
  55. Robinson SK, Thompson FR, Donovan TM, Whitehead DR, Faaborg J (1995) Regional forest fragmentation and the nesting success of migratory birds. Science 267:1987–1990PubMedCrossRefGoogle Scholar
  56. Robinson WD, Robinson TR, Robinson SK, Brawn JD (2000) Nesting success of understory forest birds in central panama. J Avian Biol 31:151–164CrossRefGoogle Scholar
  57. Ryder TB, Duraes R, Tori WP, Hidalgo JR, Loiselle BA, Blake JG (2008) Nest survival for two species of manakins (Pipridae) in lowland Ecuador. J Avian Biol 39:355–358CrossRefGoogle Scholar
  58. Shaffer TL (2004) A unified approach to analyzing nest success. Auk 121:526–540CrossRefGoogle Scholar
  59. Shustack DP, Rodewald AD (2011) Nest predation reduces benefits to early clutch initiation in northern cardinals Cardinalis cardinalis. J Avian Biol 42:204–209CrossRefGoogle Scholar
  60. Small MF, Hunter ML (1988) Forest fragmentation and avian nest predation in forested landscapes. Oecologia 76:62–64Google Scholar
  61. Spanhove T, Lehouck V, Boets P, Lens L (2009a) Forest fragmentation relaxes natural nest predation in an Afromontane forest. Anim Conserv 12:267–275CrossRefGoogle Scholar
  62. Spanhove T, Lehouck V, Lens L (2009b) Edge effects on avian nest predation: the quest for a conceptual framework. Anim Conserv 12:284–286CrossRefGoogle Scholar
  63. Spanhove T, Lehouck V, Lens L (2009c) Inverse edge effect on nest predation in a Kenyan forest fragment: an experimental case study. Bird Conserv Int 19:367–378CrossRefGoogle Scholar
  64. Stratford JA, Robinson WD (2005) Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Front Ecol Environ 3:91–98CrossRefGoogle Scholar
  65. Stutchbury BJM, Morton ES (2001) Behavioral ecology of tropical birds. Academic ess, LondonGoogle Scholar
  66. Tewksbury JJ, Garner L, Garner S, Lloyd JD, Saab V, Martin TE (2006) Tests of landscape influence: nest predation and brood parasitism in fragmented ecosystems. Ecology 87:759–768PubMedCrossRefGoogle Scholar
  67. Thompson HS (2004) The reproductive biology of the white–necked picathartes Picathartes gymnocephalus. Ibis 146:615–622CrossRefGoogle Scholar
  68. Vetter D, Rücker G, Storch I (2013) A meta-analysis of tropical forest edge effects on bird nest predation risk: edge effects in avian nest predation. Biol Conserv 159:382–395CrossRefGoogle Scholar
  69. Wilcove DS (1985) Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66:1211–1214CrossRefGoogle Scholar
  70. Wilder CM, Brooks TM, Lens L (1998) Vegetation structure and composition of the Taita Hills forests. J East Afr Nat Hist Soc 87:181–187CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Toon Spanhove
    • 1
    • 2
    • 5
  • Tom Callens
    • 1
    • 2
  • Caspar A. Hallmann
    • 3
  • Petri Pellikka
    • 4
  • Luc Lens
    • 1
  1. 1.Terrestrial Ecology UnitGhent UniversityGhentBelgium
  2. 2.Ornithology SectionNational Museums of KenyaNairobiKenya
  3. 3.SOVONDutch Centre for Field OrnithologyNijmegenThe Netherlands
  4. 4.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland
  5. 5.Research Institute for Nature and ForestBrusselsBelgium

Personalised recommendations