Journal of Ornithology

, Volume 155, Issue 1, pp 225–234 | Cite as

Star compass learning: how long does it take?

Original Article

Abstract

Young night-migratory birds establish a functional star compass during ontogeny by searching the starry night sky for its centre of rotation and interpreting this as “north”. The birds then use the learned location of the rotational centre to calibrate their magnetic compass. Here, we examine the required duration of this learning process. We exposed three groups of hand-raised inexperienced European Robins Erithacus rubecula to a rotating artificial star pattern for 3 weeks, 1 week, or 1 night, respectively, during ontogeny. A control group was exposed to the same, but stationary, artificial star pattern for 3 weeks. During their first autumn migration, we tested the birds’ orientation under the stationary star pattern as well as in the local geomagnetic field with no stars visible. Only the group that had the longest exposure time to celestial rotation during ontogeny was able to show orientation in the appropriate direction during autumn migration in the local geomagnetic field in relation to the memorized former centre of celestial rotation. This suggests that these birds had calibrated their magnetic compass relative to the star pattern seen during ontogeny. All other groups showed inappropriate or random orientation both under the stationary star sky and in the local geomagnetic field, suggesting that 7 nights of observing celestial rotation are not sufficient for young European Robins to establish a star compass and to calibrate their magnetic compass accordingly.

Keywords

Star compass Imprinting Bird navigation Emlen funnel 

Zusammenfassung

Das Erlernen des Sternenkompasses: Wie lange brauchen Zugvögel dafür?

Junge, nachts ziehende Singvögel entwickeln einen Sternenkompass während ihrer Ontogenie, indem sie den nächtlichen Sternenhimmel beobachten, das Rotationszentrum ermitteln und dieses für sich als “Norden” interpretieren. Anschließend wird mit Hilfe dieses Wissens über die Lage des Sternen- Nordens ihr magnetischer Kompass kalibriert. In der vorliegenden Studie untersuchen wir, wie lange Vögel für diesen Lernprozess benötigen. Wir bildeten drei Gruppen von jungen, unerfahrenen, handaufgezogenen Rotkehlchen Erithacus rubecula und präsentierten ihnen für jeweils drei Wochen, eine Woche bzw. nur eine Nacht ein künstliches, rotierendes Sternenmuster. Während ihres ersten Herbstzuges testeten wir die Vögel sowohl unter dem stationären Sternenmuster als auch im lokalen Erdmagnetfeld ohne sichtbares Sternenmuster. Lediglich die Gruppe, die während der Ontogenie am längsten den rotierenden Sternenhimmel beobachten durfte, konnte eine entsprechende Orientierung im lokalen Erdmagnetfeld bezüglich des erinnerten Rotationsfixpunktes zeigen. Dies legt nahe, dass diese Vögel während ihrer Ontogenie ihren Magnetkompass bezüglich des Sternenmusters kalibriert haben. Alle anderen Gruppen zeigten weder unter dem Sternenmuster noch im lokalen Erdmagnetfeld eine angemessene Zugrichtung. Das deutet darauf hin, dass sieben Nächte Beobachtung des rotierenden Sternenhimmels während der Ontogenie nicht ausreichen den Sternenkompass zu lernen und den Magnetkompass entsprechend zu kalibrieren.

Notes

Acknowledgments

We thank Thomas Geiger and co-workers of the electronic and mechanical workshops of the University of Oldenburg for constructing the star test chambers and Dr. Nils-Lasse Schneider for technical support. We also thank Prof. Dr. Franz Bairlein for his generous support in allowing us to use the excellent facilities of the Institute of Avian Research, Wilhelmshaven, Germany, Kane Brides for assistance to find nests, and Andreas Lischke who provided essential help with hand-raising birds. We thank Inka Spiller, Maike Gärtner, Laura Ziegenbalg and Hanna Seekamp for help with conducting the experiments. Financial funding was provided by the German Federal Ministry of Education and Research (BMBF; “Varying Tunes”, 01 GQ 0962 to H.M.), the DFG (MO 1408/1-2 to H.M.), and the Volkswagenstiftung (Lichtenberg Professur to H.M.).

References

  1. Able KP, Able MA (1990a) Ontogeny of migratory orientation in the Savannah Sparrow, Passerculus sandwichensis: calibration of the magnetic compass. Anim Behav 39:905–913CrossRefGoogle Scholar
  2. Able KP, Able MA (1990b) Calibration of the magnetic compass of a migratory bird by celestial rotation. Nature 347:378–380CrossRefGoogle Scholar
  3. Able KP, Bingman VP (1987) The development of orientation and navigation behavior in birds. Q Rev Biol 62:1–29CrossRefGoogle Scholar
  4. Åkesson S, Morin J, Muheim R, Ottosson U (2002) Avian orientation: effects of cue-conflict experiments with young migratory songbirds in the high Arctic. Anim Behav 64:469–475CrossRefGoogle Scholar
  5. Alerstam T, Högstedt G (1983) The role of the geomagnetic field in the development of birds’ compass sense. Nature 306:463–465CrossRefGoogle Scholar
  6. Batschelet E (1981) Circular statistics in biology. Academic, LondonGoogle Scholar
  7. Beason RC (1987) Interaction of visual and non-visual cues during migratory orientation by the Bobolink (Dolichonyx oryzivorus). J Ornithol 128:317–324CrossRefGoogle Scholar
  8. Beason RC (1992) You can get there from here: responses to simulated magnetic equator crossing by the Bobolink (Dolichonyx oryzivorus). Ethology 91:75–80CrossRefGoogle Scholar
  9. Beck W, Wiltschko W (1982) The magnetic field as a reference system for genetically encoded migratory direction in Pied Flycatchers (Ficedula hypoleuca Pallas). Z Tierpsychol 60:41–46CrossRefGoogle Scholar
  10. Berndt R, Winkel W (1979) Verfrachtungs-Experimente zur Frage der Geburtsortsprägung beim Trauerschnäpper (Ficedula hypoleuca). J Ornithol 120:41–53CrossRefGoogle Scholar
  11. Berthold P, Helbig AJ (1992) The genetics of bird migration: stimulus, timing, and direction. Ibis 134:35–40Google Scholar
  12. Bingman VP (1981) Savannah Sparrows have a magnetic compass. Anim Behav 29:962–963CrossRefGoogle Scholar
  13. Bingman VP (1983) Magnetic field orientation of migratory Savannah Sparrows with different first summer experience. Behaviour 87:43–53CrossRefGoogle Scholar
  14. Bingman VP (1984) Night sky orientation of migratory pied flycatchers raised in different magnetic fields. Behav Ecol Sociobiol 15:77–80CrossRefGoogle Scholar
  15. Bischof HJ (2007) Behavioral and neuronal aspects of developmental sensitive periods. NeuroReport 18:461–465PubMedCrossRefGoogle Scholar
  16. Bletz H, Weindler R, Wiltschko R, Wiltschko W, Berthold P (1996) The magnetic field as reference for the innate migratory direction in Blackcaps, Sylvia atricapilla. Naturwissenschaften 83:430–432Google Scholar
  17. Chernetsov N, Kishkinev D, Kosarev V, Bolshakov CV (2011) Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study. J Exp Biol 214:2540–2543PubMedCrossRefGoogle Scholar
  18. Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408PubMedCrossRefGoogle Scholar
  19. Emlen ST (1967a) Migratory orientation in the Indigo Bunting, Passerina cyanea. Part I: evidence for use of celestial cues. Auk 84:309–342CrossRefGoogle Scholar
  20. Emlen ST (1967b) Migratory orientation in the Indigo Bunting, Passerina cyanea. Part II: mechanism of celestial orientation. Auk 84:463–489CrossRefGoogle Scholar
  21. Emlen ST (1969) The development of migratory orientation in young Indigo Buntings. Living Bird 8:113–126Google Scholar
  22. Emlen ST (1970) Celestial rotation: its importance in the development of migratory orientation. Science 170:1198–1201PubMedCrossRefGoogle Scholar
  23. Emlen ST (1972) The ontogenic development of orientation capabilities. In: Galler SR, Schmidt-Koenig K, Jacobs GJ, Belleville RE (eds) Avian orientation and navigation. NASA, Washington, pp 191–210 Special publication 262Google Scholar
  24. Emlen ST, Emlen JT (1966) A technique for recording migratory orientation of captive birds. Auk 83:361–367CrossRefGoogle Scholar
  25. Engels S, Hein CM, Lefeldt N, Prior H, Mouritsen H (2012) Night-migratory songbirds possess a magnetic compass in both eyes. PLoS ONE 7:e43271PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48PubMedGoogle Scholar
  27. Hein CM, Engels S, Kishkinev D, Mouritsen H (2011) Robins have a magnetic compass in both eyes. Nature 471:E11–E12PubMedCrossRefGoogle Scholar
  28. Kramer G (1950) Weitere Analyse der Faktoren, welche die Zugaktivität des gekäfigten Vogels orientieren. Naturwissenschaften 37:377–378CrossRefGoogle Scholar
  29. Liu X, Chernetsov N (2012) Avian orientation: multi-cue integration and calibration of compass systems. Chin Birds 3:1–8CrossRefGoogle Scholar
  30. Löhrl H (1959) Zur Frage des Zeitpunktes einer Prägung auf die Heimatregion beim Halsbandschnäpper (Ficedula albicollis). J Ornithol 100:132–140CrossRefGoogle Scholar
  31. Merkel FW, Wiltschko W (1965) Magnetismus und Richtungsfinden zugunruhiger Rotkehlchen (Erithacus rubecula). Vogelwarte 23:71–77Google Scholar
  32. Moore FR (1978) Sunset and the orientation of a nocturnal migrant bird. Nature 274:154–156CrossRefGoogle Scholar
  33. Mouritsen H (2003) Spatiotemporal orientation strategies of long-distance migrants. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 493–513CrossRefGoogle Scholar
  34. Mouritsen H, Larsen ON (2001) Migrating songbirds tested in computer-controlled Emlen funnels use stellar cues for a time-independent compass. J Exp Biol 204:3855–3865PubMedGoogle Scholar
  35. Mouritsen H, Mouritsen O (2000) A mathematical expectation model for bird navigation based on the clock-and-compass strategy. J Theor Biol 207:283–291PubMedCrossRefGoogle Scholar
  36. Mouritsen H, Feenders G, Hegemann A, Liedvogel M (2009) Thermal paper can replace typewriter correction paper in Emlen funnels. J Ornithol 150:713–715CrossRefGoogle Scholar
  37. Muheim R, Phillips JB, Åkesson S (2006a) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839PubMedCrossRefGoogle Scholar
  38. Muheim R, Moore FR, Phillips JB (2006b) Calibration of magnetic and celestial compass cues in migratory birds—a review of cue-conflict experiments. J Exp Biol 209:2–17PubMedCrossRefGoogle Scholar
  39. Mukhin A, Kosarev V, Ktitorov P (2005) Nocturnal life of young songbirds well before migration. Proc R Soc Lond B 272:1535–1539CrossRefGoogle Scholar
  40. Prinz K, Wiltschko W (1992) Migratory orientation of Pied Flycatchers: interaction of stellar and magnetic information during ontogeny. Anim Behav 44:539–545CrossRefGoogle Scholar
  41. Sauer F (1956) Zugorientierung einer Mönchsgrasmücke (Sylvia a. atricapilla, L.) unter künstlichem Sternenhimmel. Naturwissenschaften 43:231–232CrossRefGoogle Scholar
  42. Sauer F (1957) Die Sternenorientierung nächtlich ziehender Grasmücken (Sylvia atricapilla, borin und curruca). Z Tierpsychol 14:29–70Google Scholar
  43. Shumakov ME, Zelenova NP (1988) Ontogenesis of nonvisual orientation of Blackcaps (Sylvia atricapilla) In: Abstracts of the XII eastern Baltic ornithological conference, Vilnius, pp 255–257Google Scholar
  44. Weindler P, Beck W, Liepa V, Wiltschko W (1995) Development of migratory orientation in Pied Flycatchers in different magnetic inclinations. Anim Behav 49:227–234CrossRefGoogle Scholar
  45. Weindler P, Wiltschko R, Witschko W (1996) Magnetic information affects the stellar orientation of young bird migrants. Nature 383:158–160CrossRefGoogle Scholar
  46. Weindler P, Baumetz M, Wiltschko W (1997) The direction of celestial rotation influences the development of stellar orientation in young Garden Warblers (Sylvia borin). J Exp Biol 200:2107–2113PubMedGoogle Scholar
  47. Wiltschko W, Gwinner E (1974) Evidence for an innate magnetic compass in Garden Warblers. Naturwissenschaften 61:406PubMedCrossRefGoogle Scholar
  48. Wiltschko W, Wiltschko R (1972) Magnetic compass of European Robins. Science 176:62–64PubMedCrossRefGoogle Scholar
  49. Wiltschko W, Wiltschko R (1976) Interrelation of magnetic compass and star orientation in night-migrating birds. J Comp Physiol 109:91–99CrossRefGoogle Scholar
  50. Wiltschko W, Gwinner E, Wiltschko R (1980) The effect of celestial cues on the ontogeny of non-visual orientation in the Garden Warbler (Sylvia borin). Z Tierpsychol 53:1–8PubMedCrossRefGoogle Scholar
  51. Wiltschko W, Daum P, Fergenbauer-Kimmel A, Wiltschko R (1987) The development of the star compass in Garden Warblers, Sylvia borin. Ethology 74:285–292CrossRefGoogle Scholar
  52. Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild M, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1277PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  1. 1.Institut für Biologie und UmweltwissenschaftenUniversity of OldenburgOldenburgGermany
  2. 2.Research Centre for Neurosensory SciencesUniversity of OldenburgOldenburgGermany

Personalised recommendations