Advertisement

Journal of Ornithology

, Volume 155, Issue 1, pp 195–209 | Cite as

Rock Ptarmigan (Lagopus muta) breeding habitat use in northern Sweden

  • Åshild Ø. Pedersen
  • Marie-Anne Blanchet
  • Maria Hörnell-Willebrand
  • Jane U. Jepsen
  • Martin Biuw
  • Eva Fuglei
Original Article

Abstract

Alpine and arctic tundra regions are likely to retract as a result of climate warming and concerns have been raised over the status of the Rock Ptarmigan (Lagopus muta). In Fennoscandia, the Rock Ptarmigan has low population abundance, and predictions based on harvest statistics show population declines throughout the range. In this study, we used a long-term opportunistic dataset of Rock Ptarmigan observations, environmental predictors derived from a digital vegetation map and a digital elevation model to describe the breeding distribution at three different ecological scales. Patterns of spatial distribution were similar across all the three study scales. The presence of permanent snow-fields positively influenced the occurrence of Rock Ptarmigan at the territory and landscape scale. Open vegetation, rock-dominated areas and, in particular, dry heath influenced Rock Ptarmigan presence positively at all scales. Altitude and terrain heterogeneity were important variables at all scales, with higher probabilities of Rock Ptarmigan being present at intermediate altitude ranges, with a high degree of terrain heterogeneity. This is the first study to describe Rock Ptarmigan breeding distribution in Fennoscandia and our findings yield new insights into the environmental variables that are important for the spatial distribution of Rock Ptarmigan during the breeding season. When planning conservation efforts, this information should be used to inform management regarding the protection of core areas and buffer zones related to the conservation and harvest management of the Rock Ptarmigan.

Keywords

Conservation Habitat model Multiple scales Management Spatial distribution 

Zusammenfassung

Bruthabitatnutzung beim Alpenschneehuhn ( Lagopus muta ) in Nordschweden

Es ist zu erwarten, dass alpine und arktische Tundralebensräume in Folge der Klimaerwärmung schrumpfen, und es wurden bereits Bedenken bezüglich des Status des Alpenschneehuhns (Lagopus muta) laut. In Fennoskandinavien kommt das Alpenschneehuhn in geringer Populationsdichte vor, und Prognosen auf der Grundlage von Jagdstatistiken zeigen Bestandsrückgänge im gesamten Verbreitungsgebiet. Für diese Studie verwendeten wir einen über einen längeren Zeitraum gesammelten Datensatz mit Zufallsbeobachtungen von Alpenschneehühnern, dazu unabhängige Umweltvariablen aus einer digitalen Vegetationskarte und ein digitales Höhenmodell, um die Brutverbreitung auf drei verschiedenen ökologischen Ebenen zu beschreiben. Die räumlichen Verbreitungsmuster waren für alle drei in der Studie betrachteten Ebenen ähnlich. Das Vorhandensein dauerhafter Schneefelder hatte einen positiven Einfluss auf das Vorkommen von Alpenschneehühnern, sowohl auf Revier- als auch auf Landschaftsebene. Offene Vegetation, felsenreiche Flächen und speziell trockenes Heideland beeinflussten das Vorkommen von Alpenschneehühnern auf allen drei Ebenen positiv. Die Variablen „Höhenstufe“ und „Heterogenität des Geländes“ waren auf jeder Ebene wichtig; die Wahrscheinlichkeit eines Alpenschneehuhn-Vorkommens war in mittleren Höhenlagen mit starker Geländeheterogenität höher. Dies ist die erste Untersuchung, die sich mit der Brutverbreitung des Alpenschneehuhns in Fennoskandinavien befasst, und unsere Befunde liefern neue Erkenntnisse darüber, welche Umweltvariablen für die räumliche Verteilung der Alpenschneehühner während der Brutzeit von Bedeutung sind. Bei der Planung von Naturschutzmaßnahmen sollten den für das Schutz- und Jagdmanagement Verantwortlichen die für die Gewährleistung von Kernund Pufferzonen relevanten Informationen zur Verfügung gestellt werden.

Notes

Acknowledgments

Funding for the study was provided by the Nordic Council of Ministers (NCM) Arctic Cooperation Programme 2009–2011 (project number A11601), the Norwegian Polar Institute and Hedmark University College. We thank Degitu Borecha Endale, Tomas Willebrand and two anonymous reviewers for valuable contributions to the manuscript, Oddveig Øien Ørvoll and Anders Skoglund for graphical assistance and Bernt Bye and Mats Högström for technical GIS assistance.

References

  1. Aanes S, Engen S, Saether BE, Willebrand T, Marcstrom V (2002) Sustainable harvesting strategies of willow ptarmigan in a fluctuating environment. Ecol Appl 12(1):281–290Google Scholar
  2. Anderson L, Rafstedt T, Sydow von U, Dahlskog S, Grundsten C (1985) Vegetation of Swedish mountain area. Norrbottens County. A survey on the basis of vegetation mapping and assessment of natural values. Statens Naturvaardsverk, Solna (in Swedish with English summary)Google Scholar
  3. Andersson L (2008) Vegetationskartering. Sveriges kartläggning, tillägg 1998–2007. Kartografiska Sällskapet, Gävle (in Swedish)Google Scholar
  4. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Method Ecol Evol 3:327–338CrossRefGoogle Scholar
  5. Bech N, Boissier J, Drovetski S, Novoa C (2009) Population genetic structure of rock ptarmigan in the ‘sky islands’ of French Pyrenees: implications for conservation. Anim Conser 12:138–146CrossRefGoogle Scholar
  6. Booms TM, Lindgren M, Huettmann T (2011) Linking Alaska’s predicted climate, gyrfalcon, and ptarmigan distributions in space and time: a unique 200-year perspective. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and Ptarmigan in a changing World. The Peregrine Fund, Boise, pp 1–14Google Scholar
  7. Bossert A (1995) Bestandsentwicklung und Habitatnutzung des Alpenschneehuhns Lagopus mutus im Aletschgebiet (Schweizer Alpen). Ornithol Beob 92(3):307–314 (in German)Google Scholar
  8. Boyce MS (2006) Scale for resource selection functions. Divers Distrib 12:269–276CrossRefGoogle Scholar
  9. Braunisch V, Suchant R (2010) Predicting species distributions based on incomplete survey data: the trade-off between precision and scale. Ecography 33:826–840CrossRefGoogle Scholar
  10. Brodsky LM (1988) Mating tactics of male rock ptarmigan Lagopus mutus: a conditional mating strategy. Anim Behav 36:335–342CrossRefGoogle Scholar
  11. Burnham KP, Anderson DR (2004) Multimodel inference-understanding AIC and BIC in model selection. Sociol Method Res 33:261–304CrossRefGoogle Scholar
  12. Byholm P, Burgas D, Virtanen T, Valkama J (2012) Competitive exclusion within the predator community influences the distribution of a threatened prey species. Ecology 93:1802–1808PubMedCrossRefGoogle Scholar
  13. Cotter R (1999) The reproductive biology of rock ptarmigan (Lagopus mutus) in the central Canadian Arctic. Arctic 52:23–32Google Scholar
  14. Cotter R, Boag DA (1992) Rapotor predation on rock ptarmigan (Lagopus mutus) in the central Canadian Arctic. J Raptor Res 26:146–151Google Scholar
  15. Cotter RC, Gratto CJ (1995) Effects of nest and brood visits and radio transmitters on rock ptarmigan. J Wildl Manag 59:93–98CrossRefGoogle Scholar
  16. Del Hoyo J, Elliott A, Sargatal J (eds) (1994) Handbook of the birds of the world, Lynx, BarcelonaGoogle Scholar
  17. Elith J, Leathwick J (2007) Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers Distrib 13:265–275CrossRefGoogle Scholar
  18. Eriksson T, Andersson J, Byström P, Hörnell-Willebrand M, Laitila T, Sandström C, Willebrand T (2006) Fish and wildlife in the Swedish mountain region: resources, use and management. Int J Biodivers Sci Manag 2(4):334–342Google Scholar
  19. Favaron M, Scherini GC, Preatoni D, Tosi G, Wauters LA (2006) Spacing behaviour and habitat use of rock ptarmigan (Lagopus mutus) at low density in the Italian Alps. J Ornithol 147:618–628CrossRefGoogle Scholar
  20. Fedy B, Martin K (2011) The influence of fine-scale habitat features on regional variation in population performance of alpine white-tailed ptarmigan. Condor 113:306–315CrossRefGoogle Scholar
  21. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  22. Frederick GP, Gutierrez RJ (1992) Habitat use and population characteristics of the white-tailed ptarmigan in the Sierra-Nevada California. Condor 94:889–902CrossRefGoogle Scholar
  23. Freeman EA, Moisen G (2008) PresenceAbsence: an R package for presence-absence model analysis. J Stat Softw 23(11):1–31Google Scholar
  24. Gardarsson A (1988) Cyclic population changes and some related events in rock ptarmigan in Iceland. University of Minnesota Press, MinneapolisGoogle Scholar
  25. Graf RF, Bollmann K, Suter W, Bugmann H (2005) The importance of spatial scale in habitat models: capercaillie in the Swiss Alps. Landsc Ecol 20:703–717CrossRefGoogle Scholar
  26. Gregory RD, Van Strien A, Vorisek P, Meyling AWG, Noble DG, Foppen RPB, Gibbons DW (2005) Developing indicators for European birds. Philos Trans R Soc Lond B 360:269–288CrossRefGoogle Scholar
  27. Gudmundsson F (1972) Grit as an indicator of overseas origin of certain birds occurring in Iceland. Ibis 114:582Google Scholar
  28. Hannon SJ, Martin K (2006) Ecology of juvenile grouse during the transition to adulthood. J Zool 269:422–433CrossRefGoogle Scholar
  29. Hannon SJ, Eason PK, Martin K (1998) The birds of North America retrieved from the birds of North America Online: http://bna.birds.cornell.edu.bnaproxy.birds.cornell.edu/bna/species/369. doi: 10.2173/bna.369
  30. Hauser DW, Vanblaricom GR, Holmes EE, Osborne RW (2006) Evaluating the use of whale watch data in determining killer whale (Orcinus orca) distribution patterns. J Cetacean Res Manag 8(3):273–281Google Scholar
  31. Hofgaard A, Harper KA, Golubeva E (2012) The role of circum-arctic forest-tundra ecotone for arctic biodiversity. Biodiversity 13(3–4):174–181CrossRefGoogle Scholar
  32. Holder K, Montgomerie R (1993) Context and consequences of comb displays by male rock ptarmigan. Anim Behav 45:457–470CrossRefGoogle Scholar
  33. Hörnell-Willebrand M (2005) Temporal and spatial dynamics of willow grouse Lagopus lagopus. Doctoral dissertation, Swedish Agricultural UniversityGoogle Scholar
  34. Hörnell-Willebrand M (2012) Sammanställning avskjutningsstatistik statens mark i Jämtland Västerbotten och Norrbotten Technical report-working document www.lansstyrelsen.se (in Swedish)
  35. Huntley B, Collingham YC, Willis SG, Green RE (2008) Potential impacts of climatic change on European breeding birds. PLoS ONE 3(1):e1439PubMedCentralPubMedCrossRefGoogle Scholar
  36. Johnson CJ, Nielsen SM, Merrill EH, Mcdonald TL, Boyce MS (2006) Resource selection functions based on use-availability data: theoretical motivation and evaluation methods. J Wildl Manag 70:347–357CrossRefGoogle Scholar
  37. Kaler RSA, Ebbert SE, Braun CE, Sandercock BK (2010) Demography of a reintroduced population of Evermann’s rock ptarmigan in the Aleutian islands. Wilson J Ornithol 122:1–14CrossRefGoogle Scholar
  38. Kudo G (1991) Effects of snow-free period on the phenology of alpine plants inhabiting snow patches. Arctic Alpine Res 23:436–443CrossRefGoogle Scholar
  39. Kullman L (1979) Change and stability in the altitude of the birch tree-limit in the southern Swedish Scandes 1915–1975. Acta Phytogeogr Suecia 65:1–121Google Scholar
  40. Kullman L (2005) On the presence of late-glacial trees in the Scandes. J Biogeogr 32:1499–1500CrossRefGoogle Scholar
  41. Länsstyrelsen (2012) Ripinventeringar. http://www.lansstyrelsen.se (in Swedish)
  42. Lantmäteriet (2008) Vegetationsdata. Description vegetation types, version 1.1. Beskrivning av vegetationstyper, version 1.1. (in Swedish)Google Scholar
  43. Maindonald J, Braun WJ (2013) DAAG: Data analysis and graphics data and functions. R package version 1.16. http://CRAN.R-project.org/package=DAAG
  44. Martin K (2001) Wildlife communities in alpine and subalpine habitats. In: Johnson D (ed) Wildlife-Habitat Relationships in Oregon and Washington. Oregon University Press, Corvallis, pp 239–260Google Scholar
  45. Martin K, Wilson S (2011) Ptarmigan in North America: influence of life history and environmental conditions on population persistence. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and ptarmigan in a changing world. The Peregrine Fund, Boise, pp 45–54Google Scholar
  46. Marty E, Mossoll-Torres M (2012) Point-count method for estimating rock ptarmigan spring density in the Pyrenean chain. Eur J Wildl Res 58:357–363CrossRefGoogle Scholar
  47. Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP (2009) Habitat selection at multiple scales. Ecoscience 16:238–247CrossRefGoogle Scholar
  48. Moss R, Storch I, Muller M (2010) Trends in grouse research. Wildl Biol 16:1–11CrossRefGoogle Scholar
  49. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Levesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Menard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics impacts and research priorities. Environ Res Lett 6:1–15CrossRefGoogle Scholar
  50. Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78:691–692CrossRefGoogle Scholar
  51. Nielsen OK (1999) Gyrfalcon predation on ptarmigan: numerical and functional responses. J Anim Ecol 68:1034–1050CrossRefGoogle Scholar
  52. Nielsen OK (2011) Harvest and population change of rock ptarmigan in Iceland. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and ptarmigan in a changing world. The Peregrine Fund, Boise, pp 71–72Google Scholar
  53. Nielsen OK, Bjornsson H (1997) Rock Ptarmigan studies at Kvisker southeast Iceland 1963 to 1995. Natturufroeingurinn 66:115–122 (in Icelandic)Google Scholar
  54. Nilsen EB, Pedersen S, Brøseth H, Pedersen HC (2012) Fjellryper. En kunnskapsoversikt. NINA Rapport: 38 (in Norwegian)Google Scholar
  55. Nopp-Mayr U, Zohmann M (2008) Spring densities and calling activities of rock ptarmigan (Lagopus muta helvetica) in the Austrian Alps. J Ornithol 149:135–139CrossRefGoogle Scholar
  56. Novoa C, Besnard A, Brenot JF, Ellison LN (2008) Effect of weather on the reproductive rate of rock ptarmigan Lagopus muta in the eastern Pyrenees. Ibis 150:270–278CrossRefGoogle Scholar
  57. Novoa C, Desmet JF, Brenot JF, Muffat-Joly B, Arvin-Bérod M, Resseguir J, Tran B (2011) Demographic traits of two alpine populations of rock ptarmigan. In: Sandercock BK, Martin K, Segelbacher G (eds) Ecology conservation and management of grouse. University of California Press, Los Angeles, pp 267–280Google Scholar
  58. Nystrom J, Ekenstedt J, Angerbjorn A, Thulin L, Hellstrom P, Dalen L (2006) Golden eagles on the Swedish mountain tundra-diet and breeding success in relation to prey fluctuations. Ornis Fenn 83:145–152Google Scholar
  59. Ottosson U, Ottvall R, Elmberg J, Green M, Gustafsson R, Haas F, Holmqvist N, Lindström Å, Nilsson L, Svensson M, Svensson S, Tjernberg M (2012) Fåglarna i Sverige-antal och förekomst. Swedish Ornithological Society, HalmstadGoogle Scholar
  60. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model 133:225–245CrossRefGoogle Scholar
  61. Pedersen HC, Karlsen DH (2007) Alt om rypa Biologi jakt og forvaltning. Tun Forlag (in Norwegian)Google Scholar
  62. Pedersen HC, Steen H, Kastdalen L, Broseth H, Ims RA, Svendsen W, Yoccoz NG (2004) Weak compensation of harvest despite strong density-dependent growth in willow ptarmigan. Proc R Soc Lond B 271:381–385CrossRefGoogle Scholar
  63. Pedersen ÅØ, Jepsen JU, Yoccoz NG, Fuglei E (2007) Ecological correlates of the distribution of territorial Svalbard rock ptarmigan (Lagopus muta hyperborea). Can J Zool 85:122–132CrossRefGoogle Scholar
  64. Pedersen ÅØ, Bårdsen BJ, Yoccoz NG, Lecomte N, Fuglei E (2012) Monitoring Svalbard rock ptarmigan: distance sampling and occupancy modeling. J Wildl Manag 76:308–316CrossRefGoogle Scholar
  65. Pedrini P, Sergio F (2002) Regional conservation priorities for a large predator: golden eagles (Aquila chrysaetos) in the Alpine range. Biol Conserv 103:163–172CrossRefGoogle Scholar
  66. Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Hoye TT, Ims RA, Jeppesen E, Klein DR, Madsen J, Mcguire AD, Rysgaard S, Schindler DE, Stirling I, Tamstorf MP, Tyler NJC, Van Der Wal R, Welker J, Wookey PA, Schmidt NM, Aastrup P (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358PubMedCrossRefGoogle Scholar
  67. Pulliam HR, Danielson BJ (1991) Sources, sinks, and habitat selection: a landscape perspective on population dynamics. Am Nat 137:S50–S66Google Scholar
  68. R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  69. Rettie WJ, Messier F (2000) Hierarchical habitat selection by woodland caribou: its relationship to limiting factors. Ecography 23:466–478CrossRefGoogle Scholar
  70. Revermann R, Schmid H, Zbinden N, Spaar R, Schroder B (2012) Habitat at the mountain tops: how long can rock ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multi-scale approach. J Ornithol 153:891–905CrossRefGoogle Scholar
  71. Rosenfield RN, Schneider JW, Seegar W (1995) Prey of peregrine falcons breeding in west Greenland. Condor 97:763–770CrossRefGoogle Scholar
  72. Sandercock BK, Nilsen EB, Broseth H, Pedersen HC (2011) Is hunting mortality additive or compensatory to natural mortality? Effects of experimental harvest on the survival and cause-specific mortality of willow ptarmigan. J Anim Ecol 80:244–258PubMedCrossRefGoogle Scholar
  73. Sappington JM, Longshore KM, Thompson DB (2007) Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. J Wildl Manag 71:1419–1426CrossRefGoogle Scholar
  74. Sardà-Palomera F, Brotons L, Villero D, Sierdsema H, Newson SE, Jiguet F (2012) Mapping from heterogeneous biodiversity monitoring data sources. Biodivers Conserv 21:2927–2948CrossRefGoogle Scholar
  75. Sawa Y, Takeuchi Y, Nakamura H (2011) Nest site selection and nesting biology of rock ptarmigan Lagopus muta japonicus in Japan. Bird Study 58:200–207CrossRefGoogle Scholar
  76. Schweiger AK, Nopp-Mayr U, Zohmann M (2012) Small-scale habitat use of black grouse (Tetrao tetrix L) and rock ptarmigan (Lagopus muta helvetica Thienemann) in the Austrian Alps. Eur J Wildl Res 58:35–45CrossRefGoogle Scholar
  77. Sinclair PH, Nixon WA, Hughes NL, Eckert CD (2003) Birds of the Yukon Territory. University of British Columbia PressGoogle Scholar
  78. Snall T, Kindvall O, Nilsson J, Part T (2011) Evaluating citizen-based presence data for bird monitoring. Biol Conserv 144:804–810CrossRefGoogle Scholar
  79. Stokland JN, Halvorsen R, Stoa B (2011) Species distribution modelling: effect of design and sample size of pseudo-absence observations. Ecol Model 222:1800–1809CrossRefGoogle Scholar
  80. Storch IE (2007) Grouse: status and conservation action plan 2006–2010. World Pheasant Association, FordingbridgeGoogle Scholar
  81. Tømmeraas JP (1993) The status of Gyrfalcon Falco rusticolus research in northern Fennoscandia 1992. Cinclus 16:75–82Google Scholar
  82. Unander S, Steen JB (1985) Behaviour an social structure in Svalbard rock ptarmigan Lagopus mutus hyperboreus. Ornis Scand 16:198–204CrossRefGoogle Scholar
  83. Väre H (2001) Mountain birch taxonomy and floristics of mountain birch woodlands. In: Wielgolaski FE (ed) Nordic Mountain Birch Ecosystems. UNESCO, Carnforth, pp 35–46Google Scholar
  84. Virkkala R, Heikkinen RK, Leikola N, Luoto M (2008) Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol Conserv 141:1343–1353CrossRefGoogle Scholar
  85. Watson A (1956) The annual cycle of rock ptarmigan. PhD thesis, University of AberdeenGoogle Scholar
  86. Watson A, Moss R (2008) Grouse. Collins, LondonGoogle Scholar
  87. Watson A, Moss R, Rae S (1998) Population dynamics of Scottish rock ptarmigan cycles. Ecology 79:1174–1192CrossRefGoogle Scholar
  88. Weeden RB (1964) Spatial separation of sexes in rock and willow ptarmigan in winter. Auk 81:534–541CrossRefGoogle Scholar
  89. Weeden RB (1967) Seasonal and geographic variation in the foods of adult White-tailed Ptarmigan. Condor 69:303–309CrossRefGoogle Scholar
  90. Weeden RB (1969) Foods of rock and willow ptarmigan in central Alaska with comments on interspecific competition. Auk 86:271–281CrossRefGoogle Scholar
  91. Wiebe KL, Martin K (2000) The use of incubation behavior to adjust avian reproductive costs after egg laying. Behav Ecol Sociobiol 48:463–470CrossRefGoogle Scholar
  92. Willebrand T, Hörnell M (2001) Understanding the effects of harvesting willow ptarmigan Lagopus lagopus in Sweden. Wildl Biol 7:205–212Google Scholar
  93. Willebrand T, Hörnell-Willebrand M, Asmyhr L (2011) Willow grouse bag size is more sensitive to variation in hunter effort than to variation in willow grouse density. Oikos 120:1667–1673CrossRefGoogle Scholar
  94. Wilson S, Martin K (2008) Breeding habitat selection of sympatric White-tailed Rock and Willow ptarmigan in the southern Yukon Territory Canada. J Ornithol 149:629–637CrossRefGoogle Scholar
  95. Wilson S, Martin K (2011) Life-history and demographic variation in an alpine specialist at the latitudinal extremes of the range. Popul Ecol 53:459–471CrossRefGoogle Scholar
  96. Wilson S, Martin K (2012) Influence of life history strategies on sensitivity, population growth and response to climate for sympatric alpine birds. BMC Ecol 12:9PubMedCrossRefGoogle Scholar
  97. Wong MML (2010) Niche partitioning and spatial variation in abundance of Rock (Lagopus muta) and White-tailed Ptarmigan (L. leucura): A case of habitat selection at multiple scales. Master thesis, University of AlbertaGoogle Scholar
  98. Yoccoz N, Nichols JD, Boulinier T (2001) Monitoring of biological diversity in space and time. Trends Ecol Evol 16:446–453CrossRefGoogle Scholar
  99. Yoder JM, Marschall EA, Swanson DA (2004) The cost of dispersal: predation as a function of movement and site familiarity in ruffed grouse. Behav Ecol 15:469–476CrossRefGoogle Scholar
  100. Zohmann M, Wöss M (2008) Spring density and summer habitat use of alpine rock ptarmigan Lagopus muta helvetica in the south eastern Alps. Eur J Wildl Res 54:379–383CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Åshild Ø. Pedersen
    • 1
  • Marie-Anne Blanchet
    • 1
  • Maria Hörnell-Willebrand
    • 2
  • Jane U. Jepsen
    • 3
  • Martin Biuw
    • 3
    • 4
  • Eva Fuglei
    • 1
  1. 1.Norwegian Polar InstituteTromsøNorway
  2. 2.Department of Forestry and Wildlife ManagementHedmark University CollegeElverumNorway
  3. 3.Norwegian Institute for Nature ResearchTromsøNorway
  4. 4.Akvaplan-nivaTromsøNorway

Personalised recommendations