Journal of Ornithology

, Volume 155, Issue 1, pp 157–164 | Cite as

Species abundance and migratory status affects large-scale fruit tracking in thrushes (Turdus spp.)

  • José L. Tellería
  • Luis M. Carrascal
  • Tomás Santos
Original Article


The mutualistic interactions between fruit-producing plants and seed-dispersing birds may be disrupted by the difficulties involved in tracking fruit resources, which are often patchily distributed in space and time. As a consequence, the strength of this interaction will rely on the ability of birds to distribute numbers according to the spatiotemporal patterning of the resource. This paper tests if wintering thrushes (Turdus) track inter-winter and inter-site changes of cone abundance in an area that encompasses the main range of the Spanish Juniper Juniperus thurifera in the Iberian highlands. We test whether the regional abundance and migratory status of birds affect this fruit-tracking process. Analyses were approached by using the habitat matching rule, a null model applied to explore the effect of spatiotemporal change of resources on bird distribution. All species followed inter-winter food variation over the study area but under-matched the changes. The strength of this bird–plant interaction increased with the regional abundance of individual species. When thrushes were analyzed according to their migratory status, migratory species (Turdus pilaris, T. iliacus, and T. philomelos) tracked the resource better than sedentary ones (T. viscivorus and T. merula). This suggests that in a time of rapid environmental change any reduction of vagrant and abundant migratory thrushes could weaken the strength of this bird–plant interaction.


Frugivorous birds Juniperus thurifera Habitat matching rule Turdus spp. Winter distribution 


Artenvielfalt und Zugvogelstatus beeinflussen die großräumige Standortverfolgung von Nahrungsfrüchten bei Drosseln ( Turdus spp.)

Die gegenseitig vorteilhaften Interaktionen zwischen Frucht tragenden Pflanzen und Samen verbreitenden Vögeln kann gestört werden durch die Schwierigkeit Fruchtressourcen zu finden, da diese häufig unregelmäßig verteilt sind. Daher beruht die Stärke dieser Interaktion auf der Fähigkeit der Vögel sich nach der räumlichen und zeitlichen Verteilung der Ressource zu richten. Diese Studie testet ob überwinternde Drosseln (Turdus) Unterschiede in der Zapfenmenge an Spanischen Wacholdern (Juniperus thurifera) zwischen Wintern und zwischen den Gebieten der Iberischen Hochlagen verfolgen können. Wir untersuchen, ob der regionale Bestand und der Zugstatus der Vögel einen Einfluss hat auf ihre Fähigkeit Nahrungsfrüchte zu finden. Anhand eines Nullmodels berechneten wir den Effekt der räumlich-zeitlichen Verschiebung der Ressourcenverfügbarkeit auf die Verteilung der Vögel. Alle Arten in unserem Studiengebiet folgten dem Futter zwischen den Wintern, aber konnten mit den Veränderungen nie ganz Schritt halten. Die Interaktion zwischen Vögeln und Pflanzen verstärkte sich mit dem Zugvogelstatus, denn ziehende Vögel (Turdus pilaris, T. iliacus, T. philomelos) fanden Ressourcen besser als Standvögel (T. viscivorus and T. merula). Das legt nahe, dass in einer Zeit von sich wandelnden Umweltbedingungen ein Bestandseinbruch bei ziehenden Drosseln die Interaktion zwischen Vögeln und Pflanzen stark schwächen würde.



This paper, funded by Projects CGL2008-2011/BOS and CGL2011-22953/BOS of the Spanish Ministry of Economy and Competitiveness, is a contribution to the International Campus of Excellence launched by Complutense University of Madrid (UCM), Polytechnic University of Madrid (UPM) and the Spanish Council for Scientific Research (CSIC). Two anonymous reviewers considerably improved an early version of the paper.


  1. Abrahams MV (1986) Patch choice under perceptual constraints: a cause for departure from an ideal free distribution. Behav Ecol Sociobiol 19:409–415. doi: 10.1007/BF00300543 CrossRefGoogle Scholar
  2. Blendinger PG, Ruggera RA, Núñez MG, Macchi L, Zelaya PV, Álvarez ME, Martín E, Osinaga O, Sánchez R, Haedo J (2012) Fine-tuning the fruit-tracking hypothesis: spatiotemporal links between fruit availability and fruit consumption by birds in Andean mountain forests. J Anim Ecol 81:1298–1310. doi: 10.1111/j.1365-26556.2012.02011.x PubMedCrossRefGoogle Scholar
  3. Burns KC (2004) Scale and macroecological patterns in seed dispersal mutualisms. Glob Ecol Biogeogr 13:289–293. doi: 10.1111/j.1466-822X.2004.00108.x CrossRefGoogle Scholar
  4. Cassini MH (2011) Ecological principles of species distribution models: the habitat matching rule. J Biogeogr 38:2057–2065. doi: 10.1111/j.1365-2699.2011.02552.x CrossRefGoogle Scholar
  5. Cramp S (1988) The birds of the western Palearctic, vol 5. Tyrant flycatchers to thrushes. Oxford University Press, OxfordGoogle Scholar
  6. Escribano-Avila G, Sanz-Pérez V, Pías B, Virgós E, Escudero A, Valladares F (2012) Colonization of abandoned land by Juniperus thurifera is mediated by the interaction of a diverse dispersal assemblage and environmental heterogeneity. PLoS ONE 7(10):e46993. doi: 10.1371/journal.pone.0046993 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Fretwell SD (1972) Populations in a seasonal environment. Princeton University Press, PrincetonGoogle Scholar
  8. Fretwell SD, Lucas HL (1969) On territorial behavior and other factors influencing habitat distribution in birds, I. Theoretical development. Acta Biotheor 19:16–36CrossRefGoogle Scholar
  9. García D, Ortiz-Pulido R (2004) Patterns of resource tracking by avian frugivores at multiple spatial scales: two case studies on discordance among scales. Ecography 27:187–196. doi: 10.1111/j.0906-7590.2004.03751.x CrossRefGoogle Scholar
  10. García D, Zamora R, Amico GC (2011) The spatial scale of plant–animal interactions: effects of resource availability and habitat structure. Ecol Monogr 81:103–121. doi: 10.1890/10-0470.1 Google Scholar
  11. Gaston KJ, Blackburn TM, Greenwood JJD, Gregory RD, Quinn RM, Lawton JH (2000) Abundance—occupancy relationships. J Appl Ecol 37:39–59. doi: 10.1046/j.1365-2664.2000.00485.x CrossRefGoogle Scholar
  12. Herrera CM (1984) A study of avian frugivores, bird-dispersed plants, and their interaction in Mediterranean scrublands. Ecol Monogr 54:1–23. doi: 10.2307/1942454 CrossRefGoogle Scholar
  13. Herrera CM (1987) Vertebrate-dispersed plants of the Iberian Peninsula: a study of fruit characteristics. Ecol Monogr 57:305–331. doi: 10.2307/2937089 CrossRefGoogle Scholar
  14. Holthuijzen AMA, Sharik TL, Fraser JD (1987) Dispersal of eastern red cedar (Juniperus virginiana) into pastures: an overview. Can J Bot 65:1092–1095CrossRefGoogle Scholar
  15. Hutto RT (1985) Habitat selection by non-breeding migratory landbirds. In: Cody ML (ed) Habitat selection in birds. Academic, Orlando, pp 455–476Google Scholar
  16. Johnson MD, Sherry TS (2001) Effects of food availability on the distribution of migratory warblers among habitats in Jamaica. J Anim Ecol 70:546–560. doi: 10.1046/j.1365-2656.2001.00522.x CrossRefGoogle Scholar
  17. Jordano P (1993) Geographical ecology and variation of plant–seed disperser interactions: southern Spanish junipers and frugivorous thrushes. Vegetatio 107–108:85–93Google Scholar
  18. Kennedy M, Gray RD (1993) Can ecological theory predict the distribution of foraging animals? A critical analysis of experiments on the ideal free distribution. Oikos 68:158–166. doi: 10.2307/3545322 CrossRefGoogle Scholar
  19. Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260. doi: 10.2307/3545542 CrossRefGoogle Scholar
  20. Levey DJ (1988) Spatial and temporal variation in Costa Rican fruit and fruit-eating bird abundance. Ecol Monogr 58:251–269. doi: 10.2307/1942539 CrossRefGoogle Scholar
  21. Levey DJ, Stiles FG (1992) Evolutionary precursors of long-distance migration: resource availability and movement patterns in Neotropical landbirds. Am Nat 140:447–476. doi: 10.1086/285421 CrossRefGoogle Scholar
  22. Levey DJ, Silva WR, Galetti M (2002) Seed dispersal and frugivory: ecology, evolution and conservation. CAB International, WallingfordGoogle Scholar
  23. Martin TE (1985) Resource selection by tropical frugivorous birds: integrating multiple interactions. Oecologia 66:563–573. doi: 10.1007/BF00379351 CrossRefGoogle Scholar
  24. Newton I (2004) Population limitation in migrants. Ibis 146:197–226. doi: 10.1111/j.1474-919X.2004.00293.x CrossRefGoogle Scholar
  25. Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond B 271:59–64. doi: 10.1098/rspb.2003.2569 CrossRefGoogle Scholar
  26. Onrubia A, Tellería JL (2012) Has the number of birds wintering in the Maghreb decreased? A test in the Gibraltar Strait. Ardeola 59:123–129Google Scholar
  27. Pulliam HR, Caraco T (1984) Living in groups: is there an optimal groups size? In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell, New York, pp 122–147Google Scholar
  28. Ranta E, Lundberg P, Kaitala V (2000) Size of environmental grain and resource matching. Oikos 89:573–576. doi: 10.1034/j.1600-0706.2000.890317.x CrossRefGoogle Scholar
  29. Rey PJ (2011) Preserving frugivorous birds in agro-ecosystems: lessons from Spanish olive orchards. J Appl Ecol 48:228–237. doi: 10.1111/j.1365-2664.2010.01902.x CrossRefGoogle Scholar
  30. Robb GN, McDonald RA, Chamberlain DE, Reynolds SJ, Harrison THE, Bearhop S (2008) Winter feeding of birds increases productivity in the subsequent breeding season. Biol Lett 4:220–223. doi: 10.1098/rsbl.2007.0622 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Santos T (1982) Migración e invernada de zorzales y mirlos (género Turdus) en la Península Ibérica. PhD dissertation, Universidad Complutense, MadridGoogle Scholar
  32. Santos T, Suárez F, Tellería JL (1983) The bird communities of Iberian Juniper woodlands (Juniperus thurifera L.). In: Purroy FJ (ed) Bird census and Mediterranean landscape. Editorial de la Universidad de León, León, pp 79–88Google Scholar
  33. Santos T, Tellería JL, Virgós E (1999) Dispersal of Spanish Juniper Juniperus thurifera by birds and mammals in a fragmented landscape. Ecography 22:193–204. doi: 10.1111/j.1600-0587.1999.tb00468.x CrossRefGoogle Scholar
  34. Saracco JF, Collazo JA, Groom MJ (2004) How do frugivores track resources? Insights from spatial analyses of bird foraging in a tropical forest. Oecologia 139:235–245. doi: 10.1007/s00442-004-1493-7 PubMedCrossRefGoogle Scholar
  35. Şekercioğlu CH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proc Natl Acad Sci USA 101:18042–18047. doi: 10.1073-pnas.0408049101 PubMedCrossRefGoogle Scholar
  36. Shochat E, Abramsky Z, Pinshow B, Whitehouse M (2002) Density-dependent habitat selection in migratory passerines during stopover: what causes the deviation from IFD? Evol Ecol 16:469–488. doi: 10.1023/A:1020851801732 CrossRefGoogle Scholar
  37. Tellería JL, Pérez-Tris J (2003) Seasonal distribution of a migratory bird: effects of local and regional resource tracking. J Biogeogr 30:1583–1591. doi: 10.1046/j.1365-2699.2003.00960.x CrossRefGoogle Scholar
  38. Tellería JL, Asensio B, Díaz M (1999) Aves Ibéricas II. Passeriformes. Reyero, MadridGoogle Scholar
  39. Tellería JL, Pérez-Tris J, Ramírez A, Fernández E, Carbonell R (2001) Distribution of robins (Erithacus rubecula) in wintering grounds: effects of conspecific density, migratory status and age. Ardea 89:361–371Google Scholar
  40. Tellería JL, Ramírez A, Pérez-Tris J (2005) Conservation of seed-dispersing migrant birds in Mediterranean habitats: shedding light on patterns to preserve processes. Biol Conserv 124:493–502. doi: 10.1016/j.biocon.2005.02.011 CrossRefGoogle Scholar
  41. Tellería JL, Ramírez A, Pérez Tris J (2008) Fruit tracking between sites and years by birds in Mediterranean wintering grounds. Ecography 31:381–388. doi: 10.1111/j.0906-7590.2008.05283.x
  42. Tellería JL, de la Hera I, Ramírez A, Santos T (2011) Conservation opportunities in Spanish juniper Juniperus thurifera woodlands: the case of migratory thrushes Turdus spp. Ardeola 58:57–60Google Scholar
  43. Visser ME, Perdeck AC, Van Balen JH, Both C (2009) Climate change leads to decreasing bird migration distances. Glob Change Biol 15:1859–1865. doi: 10.1111/j.1365-2486.2009.01865.x CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • José L. Tellería
    • 1
  • Luis M. Carrascal
    • 2
  • Tomás Santos
    • 1
  1. 1.Dept. de Zoología y Antropología FísicaUniversidad Complutense, CEI-MoncloaMadridSpain
  2. 2.Dept. de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales, MNCN-CSICMadridSpain

Personalised recommendations