Journal of Ornithology

, Volume 154, Issue 4, pp 1067–1078 | Cite as

Environmental conditions on wintering grounds and during migration influence spring nutritional condition and arrival phenology of Neotropical migrants at a northern stopover site

Original Article

Abstract

Assessing effects of winter habitat quality and environmental conditions on fitness of migratory birds is important to understand factors that regulate migratory bird populations throughout the annual cycle. We evaluated effects of winter habitat occupancy, as inferred from tissue stable-carbon (δ13C) and -nitrogen (δ15N) isotope values, on nutritional condition and arrival date of seven long-distance Nearctic–Neotropical migratory species sampled at Delta Marsh Bird Observatory (DMBO, Manitoba, Canada) during their spring migration to more northerly breeding areas. Additionally, we used a long-term dataset of DMBO to assess the effect of May minimum temperature, May minimum daily temperature, and El Niño–Southern Oscillation (ENSO) index on body condition and spring arrival date. A positive effect of assumed mesic winter habitat on nutritional condition and arrival phenology was detected primarily in species overwintering in the Caribbean (Palm Warbler Setophaga palmarum, Northern Waterthrush Parkesianovaboracensis). We caution, then, against generalizing the results of previous isotopic studies inferring winter habitat use applied to Neotropical migrants wintering in the Caribbean (e.g., American Redstart Setophaga ruticilla) to those species or populations wintering elsewhere and especially away from dichotomous mangrove versus scrub habitats. In general, birds arrived later and in lower nutritional condition during colder springs, and early migrants did not adjust their timing of migration to spring temperature. Early arrival was associated with poorer nutritional condition, and most species had their lowest nutritional condition during the coldest periods of migration. ENSO, probably through its influence on weather and food availability during winter, carried over to northern latitudes and affected both spring arrival date and nutritional condition.

Keywords

Condition index Arrival phenology Winter habitat Carry-over effects 

Zusammenfassung

Die Umweltbedingungen in den Überwinterungsgebieten und auf dem Zug beeinflussen den Ernährungszustand im Frühjahr und die Ankunftsphänologie neotropischer Zugvögel in einem nördlichen Rastgebiet

Den Einfluss der Winterhabitatqualität und der Umweltbedingungen auf die Fitness von Zugvögeln abzuschätzen, ist wichtig, um die Faktoren zu verstehen, die Zugvogelpopulationen im Jahresverlauf regulieren. Wir haben die Effekte der Winterhabitatbesetzung, abgeleitet aus den Werten stabiler Isotope von Kohlenstoff (δ13C) und Stickstoff (δ15N) in Geweben, auf den Ernährungszustand und das Ankunftsdatum von sieben nearktisch-neotropischen Zugvogelarten ausgewertet. Diese Arten wurden während ihres Frühjahrszuges in nördlicher gelegene Brutgebiete an der Delta Marsh Vogelbeobachtungsstation (DMBO, Manitoba, Kanada) beprobt. Zusätzlich haben wir einen Langzeit-Datensatz der DMBO verwendet, um den Effekt der Minimumtemperatur im Mai, der minimalen Tagestemperatur im Mai und des El Niño–Südlichen Oszillations (ENSO) Indexes auf die Körperkondition und das Ankunftsdatum im Frühjahr abzuschätzen. Ein positiver Effekt des vermeintlich mesischen Winterhabitats auf den Ernährungszustand und die Ankunftsphänologie wurde hauptsächlich bei Arten festgestellt, die in der Karibik überwintern (Sumpfwaldsänger Setophaga palmarum; Drosselwaldsänger Parkesia noveboracensis). Wir warnen daher davor, die Ergebnisse vorheriger Isotopuntersuchungen zur Winterhabitatnutzung von neotropischen Zugvögeln, die in der Karibik überwintern (z. B. Schnäpperwaldsänger Setophaga ruticilla), auf Arten oder Populationen zu übertragen, die anderswo überwintern, insbesondere außerhalb von dichotomen Mangroven- versus Buschhabitaten. Im Allgemeinen trafen Vögel in kälteren Frühjahren später und in schlechterem Ernährungszustand ein, und frühe Zugvögel passten das Timing ihres Zuges nicht an die Frühjahrstemperatur an. Eine frühe Ankunft war mit schlechterem Ernährungszustand assoziiert, und die meisten Arten wiesen ihren schlechtesten Ernährungszustand während der kältesten Perioden des Zuges auf. Die ENSO, wahrscheinlich durch ihren Einfluss auf das Wetter und die Nahrungsverfügbarkeit im Winter, hatte auch Einfluss in nördlichen Breiten und wirkte sich sowohl auf das Ankunftsdatum im Frühjahr als auch auf den Ernährungszustand aus.

Supplementary material

10336_2013_975_MOESM1_ESM.doc (68 kb)
Supplementary material 1 (DOC 68 kb)
10336_2013_975_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 kb)
10336_2013_975_MOESM3_ESM.docx (16 kb)
Supplementary material 3 (DOCX 16 kb)

References

  1. Ahola M, Laaksonen T, Sippola K, Eeva T, Rainio K, Lehikoinen EA (2004) Variation in climate warming along the migration route uncouples arrival and breeding dates. Glob Change Biol 10:1610–1617CrossRefGoogle Scholar
  2. Ambrosini R, Orioli V, Massimino D, Bani L (2011) Identification of putative wintering areas and ecological determinants of common house-martin (Delichon urbicum) and common swift (Apus apus) breeding in northern Italy. Avian Conserv Ecol 6:3. http://dx.doi.org/10.5751/ACE-00439-060103
  3. Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C et al (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycles 17:1031CrossRefGoogle Scholar
  4. Bearhop S, Hilton GM, Votier SC, Waldron S (2004) Stable isotope ratios indicate that body condition in migrating passerines is influenced by winter habitat. Proc R Soc Lond B 271:S215–S218CrossRefGoogle Scholar
  5. Both C, Bijlsma RG, Visser ME (2005) Climatic effects on spring migration and breeding in long distance migrant, the Pied Flycatcher Ficedula hypoleuca. J Avian Biol 36:368–373CrossRefGoogle Scholar
  6. Boulet M, Gibbs HL, Hobson KA (2006) Integrated analysis of genetic, stable isotope, and banding data reveal migratory connectivity and flyways in the Northern Yellow Warbler (Dendroica petechia; Aestiva group). Ornithol Monogr 61:29–78CrossRefGoogle Scholar
  7. Boutton TW (1991) Stable carbon isotope ratios of natural materials. In: Coleman DC, Fry B (eds) Carbon isotope techniques. Academic, San Diego, pp 173–186CrossRefGoogle Scholar
  8. Burnham KP, Anderson DR (2002) Multimodel selection and multimodel inference: A practical information theoretic approach. Springer, New YorkGoogle Scholar
  9. Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci USA 100:12219–12222PubMedCrossRefGoogle Scholar
  10. Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992PubMedCrossRefGoogle Scholar
  11. Dawson WR, Marsh RL, Yacoe ME (1983) Metabolic adjustments of small passerine birds for migration and cold. Am J Physiol 245:755–767Google Scholar
  12. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506CrossRefGoogle Scholar
  13. Drent R, Both C, Green M, Madsen J, Piersma T (2003) Pay-offs and penalties of competing migratory schedules. Oikos 103:274–292CrossRefGoogle Scholar
  14. Eaton SW (1995) Northern Waterthrush (Parkesia noveboracensis). In: Pool A (ed) The birds of North America online. Ithaca, Cornell Lab of Ornithology. http://bna.birds.cornell.edu/bna/species/182. Accesses 6 April 2011
  15. Ehleringer JR (1991) 13C/12C fractionation and its utility in terrestrial plant studies. In: Coleman DC, Fry B (eds) Carbon isotopes techniques. Academic, San Diego, pp 187–201CrossRefGoogle Scholar
  16. Evans DR (2007) Soil nitrogen isotope composition. In: Michener RH, Lajtha K (eds) Stable isotopes in ecology and environmental science, 2nd edn. Blackwell, Oxford, pp 83–97CrossRefGoogle Scholar
  17. Gilbert N, Raworth DA (1996) Insects and temperature: a general theory. Can Entomol 128:1–13CrossRefGoogle Scholar
  18. Hobson KA (2008) Applying isotopic methods to tracking animal movements. In: Hobson KA, Wassenaar LI (eds) Tracking animal migration with stable isotopes. Elsevier, London, pp 45–78CrossRefGoogle Scholar
  19. Hobson KA, Barnett-Johnson R, Cerling T (2010) Using isoscapes to track animal migration. In: West JB, Dawson TE, Bowen GJ, Tu KP (eds) Isoscapes: understanding movement, pattern, and process on earth through isotope mapping. Springer, London, pp 273–298Google Scholar
  20. Holmgren M, Scheffer M, Ezcurra E, Gutierrez JR, Mohren GMJ (2001) El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol Evol 16:89–94PubMedCrossRefGoogle Scholar
  21. Huin N, Sparks TH (1998) Arrival and progression of the swallow Hirundo rustica through Britain. Bird Study 45:361–370CrossRefGoogle Scholar
  22. Hussell DJT, Ralph CJ (2005) Recommended methods for monitoring change in landbird populations by counting and capturing migrants. North Am Bird Bander 30:6–20Google Scholar
  23. Jaksic FM (2001) Ecological effects of El Niño in terrestrial ecosystems of western South America. Ecography 24:241–250Google Scholar
  24. Kokko H (1999) Competition for early arrival in migratory birds. J Anim Ecol 68:640–650CrossRefGoogle Scholar
  25. Labocha MK, Hayes JP (2012) Morphometric indices of body condition in birds: a review. J Ornithol 153:1–22CrossRefGoogle Scholar
  26. Lajtha K, Marsha JD (1994) Sources of variation in the stable isotopic composition of plants. In: Lajtha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Oxford University Press, London, pp 1–21Google Scholar
  27. LaManna JA, George TL, Saracco JF, Nott MP, DeSante DF (2012) El Nino southern oscillation influences annual survival of a migratory songbird at a regional scale. Auk 129:734–743CrossRefGoogle Scholar
  28. Lowther PE (1999) Alder Flycatcher (Empidonax alnorum). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu/bna/species/454. Accessed 6 April 2011
  29. Lozano GA, Perreault S, Lemon RE (1996) Age, arrival date and reproductive success of male American Redstarts Setophaga ruticilla. J Avian Biol 27:164–170CrossRefGoogle Scholar
  30. MacKenzie DI (1982) The dune-ridge forest, Delta Marsh, Manitoba: overstory vegetation and soil patterns. Can Field Nat 96:61–68Google Scholar
  31. Marra PP, Holmes RT (2001) Consequences of dominance-mediated habitat segregation in American Redstarts during the nonbreeding season. Auk 118:92–104Google Scholar
  32. Marra PP, Sherry TW, Holmes RT (1993) Territorial exclusion by a Neotropical migrant bird in winter: a removal experiment with American Redstarts (Setophaga ruticilla) in Jamaica. Auk 110:565–572CrossRefGoogle Scholar
  33. Marra PP, Hobson KA, Holmes RT (1998) Linking winter and summer events in a migratory bird by using stable-carbon isotopes. Science 282:1884–1886PubMedCrossRefGoogle Scholar
  34. Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315PubMedCrossRefGoogle Scholar
  35. Mazerolle DF, Dufour KW, Hobson KA, den Haan HE (2005) Effects of large-scale climatic fluctuations on survival and production of young in a neotropical migrant songbird, the Yellow Warbler Dendroica petechia. J Avian Biol 36:155–163CrossRefGoogle Scholar
  36. Mazerolle DF, Sealy SG, Hobson KA (2011) Interannual flexibility in the breeding phenology of a neotropical migrant songbird in response to weather conditions at breeding and wintering areas. Ecoscience 18:18–25CrossRefGoogle Scholar
  37. Newton I (2006) Can conditions experienced during migration limit the population levels of birds? J Ornithol 147:146–166CrossRefGoogle Scholar
  38. NOAA (2011) National Oceanic and Atmospheric Administration. http://www.cpc.ncep.noaa.gov/data/indices/. Accessed 20 April 2011
  39. Norris DR (2005) Carry-over effects and habitat quality in migratory populations. Oikos 109:178–186CrossRefGoogle Scholar
  40. Norris DR, Marra PP (2007) Seasonal interactions, habitat quality, and population dynamics in migratory birds. Condor 109:535–547CrossRefGoogle Scholar
  41. Norris DR, Taylor CM (2006) Predicting the consequences of carry-over effects for migratory populations. Biol Lett 2:148–151PubMedCrossRefGoogle Scholar
  42. Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM (2004) Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc R Soc Lond B 271:59–64CrossRefGoogle Scholar
  43. Norris DR, Marra PP, Kyser TK, Ratcliffe LM (2005) Tracking habitat use in a long distance migratory bird, the American Redstart (Setophaga ruticilla), using stable ratios in cellular blood. J Avian Biol 36:164–170CrossRefGoogle Scholar
  44. Norris DR, Marra PP, Bowen GJ, Ratcliffe LM, Royle JA, Kyser TK (2006) Migratory connectivity of a widely distributed songbird, the American Redstart (Setophaga ruticilla). Ornithol Monogr 61:14–28CrossRefGoogle Scholar
  45. Nott PM, DeSante DF, Siegel RB, Pyle P (2002) Influences of the el Niño/Southern Oscillation and the North Atlantic Oscillation on avian productivity in forests of the pacific northwest of North America. Glob Ecol Biogeogr 11:333–342CrossRefGoogle Scholar
  46. Philander GS (1990) El Niño, La Niña, and the Southern oscillation. Academic, San DiegoGoogle Scholar
  47. Pyle P (1997) Identification guide to North American birds. Slate Creek, BolinasGoogle Scholar
  48. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Nino/Southern oscillation. Mon Weather Rev 115:1606–1626CrossRefGoogle Scholar
  49. Runge MC, Marra PP (2005) Modeling seasonal interactions in the population dynamics of migratory birds. In: Greenberg R, Marra PP (eds) Birds of two worlds. Johns Hopkins University Press, Baltimore, pp 375–389Google Scholar
  50. Saino N, Zépt T, Romano M, Rubolini D, Spina F, Møller AP (2004) Ecological conditions during winter predict arrival date at the breeding grounds in a trans-Saharan migratory bird. Ecol Lett 7:21–25CrossRefGoogle Scholar
  51. Shabbar A, Khandekar M (1996) The impact of El Niño Southern Oscillation on the temperature field over Canada. Atmos Ocean 34:4101–4106CrossRefGoogle Scholar
  52. Shabbar A, Bonsal B, Khandekar M (1997) Canadian precipitation patterns with the southern oscillation. J Clim 10:3016–3027CrossRefGoogle Scholar
  53. Sherry TW, Holmes RT (1996) Winter habitat quality, population limitation, and conservation of Neotropical–nearctic migrant birds. Ecology 77:36–48CrossRefGoogle Scholar
  54. Sherry TW, Johnson MD, Strong AM (2005) Does winter food limit populations of migratory birds? In: Greenberg R, Marra PP (eds) Birds of Two Worlds: The ecology and evolution of temperate-tropical migration systems. Johns Hopkins University Press, Baltimore, pp 414–425Google Scholar
  55. Sillett TS, Holmes RT, Sherry TW (2002) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042CrossRefGoogle Scholar
  56. Smith RJ, Moore FR (2003) Arrival fat and reproductive performance in a long-distance passerine migrant. Oecologia 134:325–331PubMedGoogle Scholar
  57. Smith RJ, Moore FR (2005) Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav Ecol Sociobiol 57:231–239CrossRefGoogle Scholar
  58. Smith JAM, Reitsma LR, Marra PP (2010) Moisture as a determinant of habitat quality for a nonbreeding Neotropical migratory songbird. Ecology 91:2874–2882PubMedCrossRefGoogle Scholar
  59. Studds CE, Marra PP (2005) Nonbreeding habitat occupancy and population processes: an upgrade experiment with a migratory bird. Ecology 86:2380–2385CrossRefGoogle Scholar
  60. Studds CE, Marra PP (2011) Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc R Soc Lond B 278:3437–3443CrossRefGoogle Scholar
  61. Thomas DW, Blondel J, Perret P (2001) Energetic and fitness costs of mismatching resource supply and demand in seasonally breeding birds. Science 291:2598–2599PubMedCrossRefGoogle Scholar
  62. Tøttrup AP, Raini K, Coppak T, Lehikoinen E, Rahbek C, Thorup K (2010) Local temperature fine-tunes the timing of spring migration in birds. Integr Comp Biol 50:293–304PubMedCrossRefGoogle Scholar
  63. Wilson WH Jr (1996) Palm Warbler (Sethophaga palmarum). In: Pool A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu/bna/species/238. Accessed 6 April 2011
  64. Winker K (1995) Autumn stopover on the Isthmus of Tehuantepec by woodland Nearctic–neotropic migrants. Auk 112:690–700CrossRefGoogle Scholar
  65. Winker K, Warner DW, Weisbrod AR (1992) Daily mass gains among woodland migrants at an inland stopover site. Auk 109:853–862CrossRefGoogle Scholar
  66. Wunderle JM Jr (1995) Population characteristics of Black-throated Blue Warblers wintering in three sites on Puerto Rico. Auk 112:931–946CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Ana María González-Prieto
    • 1
  • Keith A. Hobson
    • 1
    • 2
  1. 1.Department of BiologyUniversity of SaskatchewanSaskatoonCanada
  2. 2.Environment CanadaSaskatoonCanada

Personalised recommendations