Journal of Ornithology

, Volume 154, Issue 4, pp 955–963 | Cite as

Repeatability of sperm size and motility within and between seasons in the Barn Swallow (Hirundo rustica)

  • Terje Laskemoen
  • Oddmund Kleven
  • Lars Erik Johannessen
  • Frode Fossøy
  • Raleigh J. Robertson
  • Jan T. Lifjeld
Original Article


Sperm morphometry and motility are important male traits affecting fertility and post-copulatory competitive ability. However, studies examining consistency in sperm traits over time for individual males are rather scarce, particularly in free-living animals. Here, we report our analysis of various measures of sperm morphometry and sperm motility in the Barn Swallow (Hirundo rustica), both within and between breeding seasons. We found high within-season repeatabilities for all measures of sperm morphometry (all r > 0.70) and moderate repeatability of sperm motility (all r > 0.42). Between seasons, repeatabilities were somewhat lower, but total sperm length and flagellum length also showed very high repeatabilities between seasons (r > 0.85). Furthermore, sperm motility showed higher repeatabilities between seasons than within a season (all r > 0.63). Although measures of sperm motility are likely to be more plastic due to, for example, changes in body condition, they still showed moderate repeatabilities within and between seasons. Our study results also imply that a single ejaculate would be sufficient to obtain representative measures of an individual’s sperm quality traits within the same breeding season.


Barn Swallow Hirundo rustica Computer-assisted semen analyses Repeatability Sperm motility Sperm size 


Reproduzierbarkeit von Spermiengröße und -beweglichkeit bei der Rauchschwalbe ( Hirundo rustica ) innerhalb der Brutsaison und zwischen verschiedenen Brutjahren

Spermienmorphometrie und -beweglichkeit sind wichtige Merkmale, die bei Männchen die Fruchtbarkeit und die postkopulatorische Konkurrenzfähigkeit bestimmen. Allerdings sind Studien, welche die zeitliche Kontinuität der Spermieneigenschaften einzelner Männchen untersuchen, dünn gesät, besonders für wildlebende Tiere. Hier analysieren wir verschiedene Messgrößen der Spermienmorphometrie und -beweglichkeit bei Rauchschwalben (Hirundo rustica), sowohl innerhalb derselben Brutsaison als auch zwischen mehreren Brutjahren. Innerhalb einer Brutsaison ergab sich eine hohe Reproduzierbarkeit aller Messgrößen der Spermienmorphometrie (alle r > 0,70) und eine mäßige Reproduzierbarkeit hinsichtlich der Spermienbeweglichkeit (alle r > 0,42). Die Reproduzierbarkeit von einer Brutsaison zur anderen war etwas geringer, allerdings zeigten Spermien-Gesamtlänge sowie Geißellänge ebenfalls hohe Reproduzierbarkeit zwischen den Jahren (r > 0,85). Des Weiteren lag die Reproduzierbarkeit für die Spermienbeweglichkeit im Vergleich der Jahre über der innerhalb einer Brutsaison (alle r > 0,63). Die Werte für die Spermienbeweglichkeit sind wahrscheinlich plastischer, beispielsweise aufgrund von Änderungen in der Kondition, zeigten aber dennoch mäßige Reproduzierbarkeit innerhalb einer Brutsaison und zwischen den Jahren. Außerdem legt unsere Studie nahe, dass vermutlich bereits ein einziges Ejakulat genügt, um zu repräsentativen Messwerten für die Spermienqualität eines Individuums innerhalb einer Brutsaison zu gelangen.



We thank Trond Øigarden for field assistance, Diana and Bob Trainor for kindly giving us access to their property, the Ontario Ministry of Transportation for allowing us to work in one of their sand sheds and the staff at Queen’s University Biological Station for logistic support during the field season. This work was funded by a research grant from the Research Council of Norway (to JTL) and a research grant from the Natural Sciences and Engineering Research Council of Canada (to RJR). The research conforms to the legal requirements of Canada and was approved by the Canadian Wildlife Service (permit no. CA 0121) and Queen’s University Animal Care Committee (protocol no. RobertsonRJ-2003-003-R3).


  1. Aire TA (2007) Spermatogenesis and testicular cycles. In: Jamieson BGM (ed) Reproductive biology and phylogeny of birds, vol 6A. Science Publishers, Enfield, pp. 279–347Google Scholar
  2. Baer B, de Jong G, Schmid-Hempel R, Schmid-Hempel P, Høeg JT, Boomsma JJ (2006) Heritability of sperm length in the bumblebee Bombus terrestris. Genetica 127:11–23PubMedCrossRefGoogle Scholar
  3. Birkhead TR, Fletcher F (1995) Male phenotype and ejaculate quality in the Zebra Finch Taeniopygia guttata. Proc R Soc Lond B 262:329–334CrossRefGoogle Scholar
  4. Birkhead TR, Martinez JG, Burke T, Froman DP (1999) Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc R Soc Lond B 266:1759–1764CrossRefGoogle Scholar
  5. Birkhead TR, Pellatt EJ, Brekke P, Yeates R, Castillo-Juarez H (2005) Genetic effects on sperm design in the Zebra Finch. Nature 434:383–387PubMedCrossRefGoogle Scholar
  6. Boake CRB (1989) Repeatability: its role in evolutionary studies of mating behavior. Evol Ecol 3:173–182CrossRefGoogle Scholar
  7. Calhim S, Immler S, Birkhead TR (2007) Postcopulatory sexual selection is associated with reduced variation in sperm morphology. PLoS ONE 2:e413PubMedCrossRefGoogle Scholar
  8. Cohen J (1977) Reproduction. Butterworths, LondonGoogle Scholar
  9. Cramer ERA, Laskemoen T, Kleven O, Lifjeld JT (2013) Sperm length variation in House Wrens Troglodytes aedon. J Ornithol 154:129–138CrossRefGoogle Scholar
  10. Denk AG, Holzmann A, Peters A, Vermeirssen ELM, Kempenaers B (2005) Paternity in mallards: effects of sperm quality and female sperm selection for inbreeding avoidance. Behav Ecol 16:825–833CrossRefGoogle Scholar
  11. Deviche P, Wingfield JC, Sharp PJ (2000) Year–class differences in the reproductive system, plasma prolactin and corticosterone concentrations, and onset of prebasic molt in male dark-eyed juncos (Junco hyemalis) during the breeding period. Gen Comp Endocrinol 118:425–435PubMedCrossRefGoogle Scholar
  12. Donoghue AM, Sonstegard TS, King LM, Smith EJ, Burt DW (1999) Turkey sperm mobility influences paternity in the context of competitive fertilization. Biol Reprod 61:422–427PubMedCrossRefGoogle Scholar
  13. Evans MR, Goldsmith AR (2000) Male wrens with large testes breed early. Anim Behav 60:101–105PubMedCrossRefGoogle Scholar
  14. Froman DP, Feltmann AJ, Rhoads ML, Kirby JD (1999) Sperm mobility: a primary determinant of fertility in the domestic fowl (Gallus domesticus). Biol Reprod 61:400–405PubMedCrossRefGoogle Scholar
  15. Gage MJG (1998) Mammalian sperm morphometry. Proc R Soc Lond B 265:97–103CrossRefGoogle Scholar
  16. Gage MJG, Macfarlane CP, Yeates S, Ward RG, Searle JB, Parker GA (2004) Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr Biol 14:44–47PubMedGoogle Scholar
  17. Graves GR (2004) Testicular volume and asymmetry are age-dependent in black-throated blue warblers (Dendroica caerulescens). Auk 121:473–485Google Scholar
  18. Helfenstein F, Losdat S, Møller AP, Blount JD, Richner H (2010) Sperm of colorful males are better protected against oxidative stress. Ecol Lett 13:213–222PubMedCrossRefGoogle Scholar
  19. Helfenstein F, Szép T, Nagy Z, Kempenaers B, Wagner RH (2008) Between-male variation in sperm size, velocity and longevity in Sand Martins Riparia riparia. J Avian Biol 39:649–652CrossRefGoogle Scholar
  20. Immler S, Calhim S, Birkhead TR (2008) Increased postcopulatory sexual selection reduces the intramale variation in sperm design. Evolution 62:1538–1543PubMedCrossRefGoogle Scholar
  21. Immler S, Pryke SR, Birkhead TR, Griffith SC (2010) Pronounced within-individual plasticity in sperm morphometry across social environments. Evolution 64:1634–1643PubMedCrossRefGoogle Scholar
  22. Jamieson BGM (2007) Avian spermatozoa: structure and phylogeny. In: Jamieson BGM (ed) Reproductive biology and phylogeny of birds. Science Publishers, Enfield, pp 349–511Google Scholar
  23. Kleven O, Jacobsen F, Robertson RJ, Lifjeld JT (2005) Extrapair mating between relatives in the barn swallow: a role for kin selection? Biol Lett 1:389–392PubMedCrossRefGoogle Scholar
  24. Kleven O, Jacobsen F, Izadnegahdar R, Robertson RJ, Lifjeld JT (2006) Male tail streamer length predicts fertilization success in the North American barn swallow (Hirundo rustica erythrogaster). Behav Ecol Sociobiol 59:412–418CrossRefGoogle Scholar
  25. Kleven O, Laskemoen T, Fossøy F, Robertson RJ, Lifjeld JT (2008) Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62:494–499PubMedCrossRefGoogle Scholar
  26. Kleven O, Fossøy F, Laskemoen T, Robertson RJ, Rudolfsen G, Lifjeld JT (2009) Comparative evidence for the evolution of sperm swimming speed by sperm competition and female sperm storage duration in passerine birds. Evolution 63:2466–2473PubMedCrossRefGoogle Scholar
  27. Koehler LD (1995) Diversity of avian spermatozoa ultrastructure with emphasis on the members of the order Passeriformes. Mém Mus Natl Hist Nat 166:437–444Google Scholar
  28. LaMunyon CW, Ward S (1998) Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans. Proc R Soc Lond B 265:1997–2002CrossRefGoogle Scholar
  29. Laskemoen T, Kleven O, Fossøy F, Lifjeld JT (2007) Intraspecific variation in sperm length in two passerine species, the bluethroat Luscinia svecica and the willow warbler Phylloscopus trochilus. Ornis Fenn 84:131–139Google Scholar
  30. Laskemoen T, Fossøy F, Rudolfsen G, Lifjeld JT (2008) Age-related variation in primary sexual characters in a passerine with male age-related fertilization success, the bluethroat Luscinia svecica. J Avian Biol 39:322–328CrossRefGoogle Scholar
  31. Laskemoen T, Kleven O, Fossøy F, Robertson JR, Rudolfsen G, Lifjeld JT (2010) Sperm quantity and quality effects on fertilization success in a highly promiscuous passerine, the tree swallow Tachycineta bicolor. Behav Ecol Sociobiol 64:1473–1483CrossRefGoogle Scholar
  32. Laskemoen T, Albrecht T, Bonisoli-Alquati A, Cepak J, De Lope F, Hermosell IG, Johannessen LE, Kleven O, Marzal A, Mousseau TA, Møller AP, Robertson RJ, Rudolfsen G, Saino N, Vortman Y, Lifield JT (2013) Variation in sperm morphometry and sperm competition among Barn Swallow (Hirundo rustica) populations. Behav Ecol Sociobiol 67:301–309CrossRefGoogle Scholar
  33. Lifjeld JT, Laskemoen T, Kleven O, Albrecht T, Robertson RJ (2010) Sperm length variation as a predictor of extrapair paternity in passerine birds. PLoS ONE 5:e13456PubMedCrossRefGoogle Scholar
  34. Lifjeld JT, Kleven O, Jacobsen F, McGraw KJ, Safran RJ, Robertson RJ (2011) Age before beauty? Relationships between fertilization success and age-dependent ornaments in Barn Swallows. Behav Ecol Sociobiol 65:1687–1697PubMedCrossRefGoogle Scholar
  35. Locatello L, Rasotto MB, Evans JP, Pilastro A (2006) Colorful male guppies produce faster and more viable sperm. J Evol Biol 19:1595–1602PubMedCrossRefGoogle Scholar
  36. Lombardo MP, Green ML, Thorpe PA, Czarnowski MR, Power HW (2004) Repeated sampling affects tree swallow semen characteristics. J Field Ornithol 75:394–403Google Scholar
  37. Losdat S, Richner H, Blount JD, Helfenstein F (2011) Immune activation reduces sperm quality in the Great Tit. PLoS ONE 6:e22221PubMedCrossRefGoogle Scholar
  38. Lüpold S, Birkhead TR, Westneat DF (2012) Seasonal variation in ejaculate traits of male Red-Winged Blackbirds (Agelaius phoeniceus). Behav Ecol Sociobiol 66:1607–1617CrossRefGoogle Scholar
  39. Lüpold S, Linz GM, Rivers JW, Westneat DF, Birkhead TR (2009) Sperm competition selects beyond relative testes size in birds. Evolution 63:391–402PubMedCrossRefGoogle Scholar
  40. Malo AF, Garde JJ, Soler AJ, Garcia AJ, Gomendio M, Roldan ERS (2005a) Male fertility in natural populations of Red Deer is determined by sperm velocity and the proportion of normal spermatozoa. Biol Reprod 72:822–829PubMedCrossRefGoogle Scholar
  41. Malo AF, Roldan ERS, Garde J, Soler AJ, Gomendio M (2005b) Antlers honestly advertise sperm production and quality. Proc R Soc Lond B 272:149–157CrossRefGoogle Scholar
  42. McFarlane RW (1963) The taxonomic significance of avian sperm. Proc 13th Int Ornihol Congr 1:91–102Google Scholar
  43. Morrow EH, Gage MJG (2001a) Artificial selection and heritability of sperm length in Gryllus bimaculatus. Heredity 87:356–362PubMedCrossRefGoogle Scholar
  44. Morrow EH, Gage MJG (2001b) Consistent significant variation between individual males in spermatozoal morphometry. J Zool Lond 254:147–153CrossRefGoogle Scholar
  45. Mossman J, Slate J, Humphries S, Birkhead TR (2009) Sperm morphology and velocity are genetically codetermined in the zebra finch. Evolution 63:2730–2737PubMedCrossRefGoogle Scholar
  46. Møller AP (1994) Sexual selection and the barn swallow. Oxford University Press, OxfordGoogle Scholar
  47. Møller AP, Mousseau TA, Lynn C, Ostermiller S, Rudolfsen G (2008) Impaired swimming behaviour and morphology of sperm from Barn Swallows Hirundo rustica in Chernobyl. Mutat Res Genet Toxicol Environ Mutagen 650:210–216CrossRefGoogle Scholar
  48. Møller AP, Mousseau TA, Rudolfsen G, Balbontin J, Marzal A, Hermosell I, De Lope F (2009) Senescent sperm performance in old male birds. J Evol Biol 22:334–344PubMedCrossRefGoogle Scholar
  49. Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956PubMedGoogle Scholar
  50. Napier RAN (1961) Fertility in the rabbit III. Estimation of spermatozoan quality by mixed inseminations, and the inheritance of spermatozoan characters. J Reprod Fertil 2:273–289PubMedCrossRefGoogle Scholar
  51. Pitcher TE, Rodd FH, Rowe L (2007) Sexual colouration and sperm traits in guppies. J Fish Biol 70:165–177CrossRefGoogle Scholar
  52. Pizzari T, Cornwallis CK, Froman DP (2007) Social competitiveness associated with rapid fluctuations in sperm quality in male fowl. Proc R Soc Lond B 274:853–860CrossRefGoogle Scholar
  53. R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  54. Radwan J (1996) Intraspecific variation in sperm competition success in the bulb mite: a role for sperm size. Proc R Soc Lond B 263:855–859CrossRefGoogle Scholar
  55. Rudolfsen G, Figenschou L, Folstad I, Tveiten H, Figenschou M (2006) Rapid adjustments of sperm characteristics in relation to social status. Proc R Soc Lond B 273:325–332CrossRefGoogle Scholar
  56. Rudolfsen G, Figenschou L, Folstad I, Kleven O (2008) Sperm velocity influence paternity in the Atlantic cod (Gadus morhua L.). Aquac Res 39:212–216CrossRefGoogle Scholar
  57. Schmoll T, Kleven O (2011) Sperm dimensions differ between two coal tit Periparus ater populations. J Ornithol 152:515–520CrossRefGoogle Scholar
  58. Serrano JV, Folstad I, Rudolfsen G, Figenschou L (2006) Do the fastest sperm within an ejaculate swim faster in subordinate than in dominant males of Arctic char? Can J Zool 84:1019–1024CrossRefGoogle Scholar
  59. Turner AK (2006) The barn swallow. T. & A. D Poyser, LondonGoogle Scholar
  60. Urbach D, Bittner D, Lenz TL, Bernet D, Wahli T, Wedekind C (2007) Sperm velocity in an Alpine Whitefish: effects of age, size, condition, fluctuating asymmetry and gonad abnormalities. J Fish Biol 71:672–683CrossRefGoogle Scholar
  61. Ward PI (1998) Intraspecific variation in sperm size characters. Heredity 80:655–659PubMedCrossRefGoogle Scholar
  62. Ward PI (2000) Sperm length is heritable and sex-linked in the yellow dung fly (Scathophaga stercoraria). J Zool Lond 251:349–353CrossRefGoogle Scholar
  63. Wolfson A (1952) The cloacal protuberance: a means for determining breeding condition in live male passerines. Bird Band 23:159–165CrossRefGoogle Scholar
  64. Woolley DM, Beatty RA (1967) Inheritance of midpiece length in mouse spermatozoa. Nature 215:94–95PubMedCrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Terje Laskemoen
    • 1
  • Oddmund Kleven
    • 1
    • 2
  • Lars Erik Johannessen
    • 1
  • Frode Fossøy
    • 1
    • 3
  • Raleigh J. Robertson
    • 4
  • Jan T. Lifjeld
    • 1
  1. 1.Natural History MuseumUniversity of OsloOsloNorway
  2. 2.Norwegian Institute for Nature Research-NINATrondheimNorway
  3. 3.Department of BiologyNorwegian University of Science and TechnologyTrondheimNorway
  4. 4.Department of BiologyQueen’s UniversityKingstonCanada

Personalised recommendations