Journal of Ornithology

, Volume 154, Issue 4, pp 933–943 | Cite as

Mortality within the annual cycle: seasonal survival patterns in Afro-Siberian Red Knots Calidris canutus canutus

  • Jutta LeyrerEmail author
  • Tamar Lok
  • Maarten Brugge
  • Bernard Spaans
  • Brett K. Sandercock
  • Theunis Piersma
Original Article


Estimates of seasonal mortality for long-distance migrant birds are extremely challenging to collect and consequently reports are scarce. Determining when and where mortality occurs within the annual cycle is important for an understanding of population dynamics and the evolutionary drivers of long-distance migration. We collected data on seasonal survival in a mark–recapture study of colour-marked Red Knots Calidris canutus canutus in their main wintering area at tropical Banc d’Arguin, Mauritania, West Africa. Our study population breeds 9,000 km to the northeast on Taymyr Peninsula, central northern Siberia. Our results show that annual apparent survival decreased from 0.87 ± 0.01 (SE) in 2002–2005 to 0.78 ± 0.02 in 2006–2009. During the 3-year time-window between 2006 and 2009, additional resightings just before migration and after return to the wintering grounds allowed us to partition the year into two periods: the non-breeding period on the Banc d’Arguin, and the migration and breeding period away from it. We estimated that, on the Banc d’Arguin, the 2-month apparent survival rate was 0.94 ± 0.01, whereas 2-month survival approached unity during the rest of year. Hence, most mortality occurred on the tropical wintering grounds. We review the possible physiological and ecological stressors involved and discuss the generality of these results.


Annual survival Banc d’Arguin Long-distance migration Mark–recapture models Mauritania Shorebird Wader 


Die Verteilung der Sterblichkeit im Jahresverlauf: saisonale Überlebenswahrscheinlichkeiten bei Afro-Sibirischen Knutts Calidris canutus canutus

Das Sammeln von Daten zu saisonaler Sterblichkeit von Langstreckenziehern stellt Forscher vor große Herausforderungen. Dementsprechend werden solche Daten selten veröffentlicht. Um Populationsdynamiken und die evolutionären Einflussfaktoren auf die Entwicklung des Langstreckenzugs verstehen zu können, ist es jedoch wichtig, zu wissen, wann im Jahresverlauf die Sterblichkeit am höchsten ist. Wir haben Daten zu saisonaler Sterblichkeit im Rahmen eines Farbberingungsprojekts an Afro-Sibirischen Knutts Calidris canutus canutus in ihrem Hauptüberwinterungsgebiet an der Banc d’Arguin, Mauretanien, Westafrika, gesammelt. Diese Population brütet auf der 9,000 km entfernten Halbinsel Taimyr, im nördlichen Zentralsibirien. Unsere Ergebnisse zeigen, daß die lokale jährliche Überlebenwahrscheinlichkeit von 0.87 (±0.01 SE) in 2002–2005 auf 0.78 (±0.02) in 2006–2009 gesunken ist. Im Zeitraum zwischen 2006 und 2009 hatten wir die Gelegenheit, sowohl kurz vor dem Abflug in die Brutgebiete als auch nach der Rückkehr in die Wintergebiete, zusätzliche Farbring-Beobachtungen durchzuführen. Diese haben es ermöglicht, das Jahr in zwei Zeiträume aufzuteilen—die Wintersaison an der Banc d’Arguin und die kombinierte Zug- und Brutsaison außerhalb der Banc d’Arguin -, und somit saisonale Überlebensraten zu berechnen. Wie berechneten, daß die Überlebenswahrscheinlichkeit an der Banc d’Arguin 0.94 (±0.01, über einen zweimonatigen Zeitraum) betrug, während die entsprechende Überlebenswahrscheinlichkeit im Rest des Jahres beinahe 1 war. Es scheint daher, daß die höchste Sterblichkeit im Jahresverlauf in den tropischen Überwinterungsgebieten stattfand. Wir erörtern diese Erkenntnisse vor dem Hintergrund möglicher physiologischer und ökologischer Stressfaktoren und diskutieren die allgemeine Gültigkeit unserer Ergebnisse.



We thank the Parc National du Banc d’Arguin (PNBA) in Nouakchott, Mauritania for permission to work in the national park and for all invaluable help during all phases of many expeditions. Our colleagues at the Biological Station Iwik always made us feel welcome and helped in many ways during our stays. Participants in the Mauritania expeditions 2002–2009 included N. Abayie, M. Avloitt, P. Battley, H. Blijleven, P. de Boer, D. Buehler, M. Bulte, A. Dekinga, J. Dierschke, J. van Dijk, A. Evers, P. de Goeij, K. Grond, K. Günther, J. Guilherme, H.O.M. El Hacen, G.T. Hallgrimson, L. Hofstee, J. Hooijmeijer, H. Horn, J. ten Horn, P.J. van den Hout, J. van de Kam, C. Kelly, C. Ketzenberg, E. Koomson, L. van Kooten, C. Kraan, J. Lewis, B. Loos, L. Mendes, Y. Ntiamoa-Baidu, K. Oosterbeek, P. Potts, S. Pruiksma, A. Purgue, J. Reneerkens, F. Robin, G. Scheiffarth, J. Smart, M. Smart, N. Spaans, I. Tieleman, B. Thorrison, S. Waasdorp, and R. Ward. Valuable comments on the manuscript were provided by G. Aarts, T. Alerstam, P.F. Battley, J.A. Gill, R.T. Holmes, P.J. van den Hout, Y.I. Verkuil and by anonymous reviewers. J. van Dijk received expeditionary support from the Dutch Ministry of Agriculture, Nature and Food Quality (LNV). J.L. was financed by a PhD grant from the MAVA Foundation, Switzerland, to T.P. Field expeditions were additionally financed by the Royal NIOZ, the Prins Bernhard Cultuurfondsprijs voor Natuurbehoud to T.P. in 2004, and grants from the Schure-Beijerinck-Popping Fonds to J.L. in 2008 and 2009.


  1. Alerstam T, Hedenström A (1998) The development of bird migration theory. J Avian Biol 29:343–369CrossRefGoogle Scholar
  2. Baker AJ, Piersma T, Greenslade AD (1999) Molecular vs. phenotypic sexing in red knots. Condor 101:887–893CrossRefGoogle Scholar
  3. Baker AJ, Gonzalez PM, Piersma T, Niles LJ, de Lima Serrano do Nascimento I, Atkinson PW, Clark NA, Minton CDT, Peck MK, Aarts G (2004) Rapid population decline in red knots: fitness consequences of decreased refuelling rates and late arrival in Delaware Bay. Proc R Soc Lond B 271:875–882CrossRefGoogle Scholar
  4. Barta Z, McNamara JM, Houston AI, Weber TP, Hedenström A, Feró O (2008) Optimal moult strategies in migratory birds. Philos Trans R Soc Lond B 363:211–229CrossRefGoogle Scholar
  5. Battley PF, Warnock N, Tibbitts TL, Gill RE, Piersma T, Hassell CJ, Douglas DC, Mulcahy DM, Gartrell BD, Schuckard R, Melville DS, Riegen AC (2012) Contrasting extreme long-distance migration patterns in bar-tailed godwits Limosa lapponica. J Avian Biol 43:21–32CrossRefGoogle Scholar
  6. Brochard C, Spaans B, Prop J, Piersma T (2002) Use of individual colour-ringing to estimate survival in male and female red knot Calidris canutus islandica: a progress report for 1998–2001. Wader Study Group Bull 99:54–56Google Scholar
  7. Buehler DM, Piersma T (2008) Travelling on a budget: predictions and ecological evidence for bottlenecks in the annual cycle of long-distance migrants. Philos Trans R Soc Lond B 363:247–266CrossRefGoogle Scholar
  8. Buehler DM, Piersma T, Matson K, Tieleman BI (2008) Seasonal redistribution of immune function in a migrant shorebird: annual-cycle effects override adjustments to thermal regime. Am Nat 172:783–796PubMedCrossRefGoogle Scholar
  9. Casey AE, Jones KL, Sandercock BK, Wisely SM (2009) Heteroduplex molecules cause sexing errors in a standard molecular protocol for avian sexing. Mol Ecol Res 9:61–65CrossRefGoogle Scholar
  10. Clausen P, Frederiksen M, Percival SM (2001) Seasonal and annual survival of East-Atlantic pale-bellied brent geese Branta hrota assessed by capture-recapture analysis. Ardea 89:101–112Google Scholar
  11. Conklin JR, Battley PF (2011) Impacts of wind on individual migration schedules of New Zealand bar-tailed godwits. Behav Ecol 22:854–861CrossRefGoogle Scholar
  12. Cooch EG, White GC (2011) Program MARK—a gentle introduction. Accessed Mar 2012
  13. Cyr NE, Wikelski M, Romero LM (2008) Increased energy expenditure but decreased stress responsiveness during molt. Physiol Biochem Zool 81:542–562Google Scholar
  14. Davidson NC, Piersma T (2009) Red knots Calidris canutus. In: Delany S, Scott D, Dodman T, Stroud DA (eds) An atlas of wader populations in Africa and western Eurasia. Wetlands International, Wageningen, pp 262–268Google Scholar
  15. Drent RH, Both C, Green M, Madsen J, Piersma T (2003) Pay-offs and penalties of competing migratory schedules. Oikos 103:274–292CrossRefGoogle Scholar
  16. Ens BJ, Piersma T, Tinbergen JM (1994) Towards predictive models of bird migration schedules: theoretical and empirical bottlenecks. In: NIOZ-report 1994–1995. Royal Netherlands Institute for Sea Research, Den BurgGoogle Scholar
  17. Fridolfsson A-K, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  18. Gauthier G, Pradel R, Menu S, Lebreton J-D (2001) Seasonal survival of greater snow geese and effect of hunting under dependence in sighting probability. Ecology 82:3105–3119CrossRefGoogle Scholar
  19. Greenberg R, Marra PP (eds) (2004) Birds of two worlds: the ecology and evolution of migration. Johns Hopkins University Press, BaltimoreGoogle Scholar
  20. Griffiths R, Double MC, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol Ecol 7:1071–1075PubMedCrossRefGoogle Scholar
  21. Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80:4–18PubMedCrossRefGoogle Scholar
  22. Hupp JW, Schmutz JA, Ely CR (2008) Seasonal survival of radiomarked emperor geese in western Alaska. J Wildl Manag 72:1584–1595Google Scholar
  23. Klaassen M (1995) Moult and basal metabolic costs in males of two subspecies of Stonechats: the European Saxicola torquata rubicula and the East African S. t. axillaris. Oecologia 104:424–432CrossRefGoogle Scholar
  24. Kraan C, van Gils JA, Spaans B, Dekinga A, Piersma T (2010) Why Afro-Siberian red knots Calidris canutus canutus have stopped staging in the western Dutch Wadden Sea during southward migration. Ardea 98:155–160CrossRefGoogle Scholar
  25. Laake J, with contributions from E Rhakimberdiev and B Augustine (2012) Package “RMark”: R code for MARK analysis, version 2.1.4Google Scholar
  26. Lebreton J-D, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecol Monogr 62:67–118CrossRefGoogle Scholar
  27. Leyrer J, Spaans B, Camara M, Piersma T (2006) Small home ranges and high site fidelity in red knots (Calidris c. canutus) wintering on the Banc d’Arguin, Mauritania. J Ornithol 147:376–384CrossRefGoogle Scholar
  28. Leyrer J, Bocher P, Robin F, Delaporte P, Goulvent C, Joyeux E, Meunier F, Piersma T (2009) Northward migration of Afro-Siberian knots Calidris canutus canutus: high variability in red knot numbers visiting staging sites on the French Atlantic coast, 1979–2009. Wader Study Group Bull 116:145–151Google Scholar
  29. Leyrer J, Lok T, Brugge M, Dekinga A, Spaans B, van Gils JA, Sandercock BK, Piersma T (2012) Small-scale demographic structure suggests preemptive behavior in a flocking shorebird. Behav Ecol 23:1226–1233CrossRefGoogle Scholar
  30. Lindström Å, Visser GH, Daan S (1993) The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol Zool 66:490–510Google Scholar
  31. Madsen J, Frederiksen M, Ganter B (2002) Trends in annual and seasonal survival of pink-footed geese Anser brachyrhynchus. Ibis 144:218–226CrossRefGoogle Scholar
  32. McNamara JM, Houston AI (2008) Optimal annual routines: behaviour in the context of physiology and ecology. Philos Trans R Soc Lond B 363:301–319CrossRefGoogle Scholar
  33. Murton RK, Westwood NJ (1977) Avian breeding cycles. Oxford University Press, OxfordGoogle Scholar
  34. Newton I (1998) Population limitations in birds. Academic Press, LondonGoogle Scholar
  35. Oudman T, Onrust J, de Fouw J, Spaans B, Piersma T, van Gils J (2013) Why carnivores prefer mixed diet under multiple intake constraints (under review)Google Scholar
  36. Piersma T (2007) Using the power of comparison to explain habitat use and migration strategies of shorebirds worldwide. J Ornithol 148(Suppl 1):S45–S59CrossRefGoogle Scholar
  37. Piersma T (2011) Flyway evolution is too fast to be explained by the modern synthesis: proposals for an ‘extended’ evolutionary research agenda. J Ornithol 152(Suppl 1):151–159CrossRefGoogle Scholar
  38. Piersma T, Spaans B (2004) The power of comparison: ecological studies on waders worldwide. Limosa 77:1–12Google Scholar
  39. Piersma T, Klaassen M, Bruggemann JH, Blomert A-M, Gueye A, Ntiamoa-Baidu Y, van Brederode NE (1990) Seasonal timing of the spring departure of waders from the Banc d’Arguin, Mauritania. Ardea 78:123–134Google Scholar
  40. Piersma T, Prokosch P, Bredin D (1992) The migration system of Afro-Siberian knots Calidris canutus canutus. Wader Study Group Bull 64:52–63Google Scholar
  41. Piersma T, Lindström Å, Drent RH, Tulp I, Jukema J, Morrison RIG, Reneerkens J, Schekkerman H, Visser GH (2003) High daily energy expenditure of incubating shorebirds on high Arctic tundra: a circumpolar study. Funct Ecol 17:356–362CrossRefGoogle Scholar
  42. Portugal SJ, Green JA, Butler PJ (2007) Annual changes in body mass and resting metabolism in captive barnacle geese (Branta leucopsis): the importance of wing moult. J Exp Biol 210:1391–1397PubMedCrossRefGoogle Scholar
  43. Prater AJ, Merchant JH, Vuorinen J (1977) Guide to the identification and ageing of holoarctic shorebirds. BTO, TringGoogle Scholar
  44. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computation, ViennaGoogle Scholar
  45. Rogers DI, Battley PF, Sparrow J, Koolhaas A, Hassell CJ (2004) Treatment of capture myopathy in shorebirds: a successful trial in northwestern Australia. J Field Ornithol 75:157–164Google Scholar
  46. Rogers DI, Yang H-Y, Hassell CJ, Boyle AN, Rogers KG, Chen B, Zhang Z-W, Piersma T (2010) Red knots (Calidris canutus piersmai and C. c. rogersi) depend on a small threatened staging area in Bohai Bay, China. Emu 110:307–315CrossRefGoogle Scholar
  47. Sandberg R, Moore FR (1996) Fat stores and arrival on the breeding grounds: reproductive consequences for passerine migrants. Oikos 77:577–581CrossRefGoogle Scholar
  48. Sandercock BK (2003) Estimation of survival rates for wader populations: a review of mark-recapture methods. Wader Study Group Bull 100:163–174Google Scholar
  49. Sandercock BK (2006) Estimation of demographic parameters for live-encounter data: a summary review. J Wildl Manag 70:1504–1509CrossRefGoogle Scholar
  50. Sandercock BK, Jaramillo A (2002) Annual survival rates of wintering sparrows: assessing demographic consequences of migration. Auk 119:149–165Google Scholar
  51. Schroeder J, Kentie R, van der Velde M, Hooijmeijer JCEW, Both C, Haddrath O, Baker AJ, Piersma T (2010) Linking intronic polymorphism on the CHD1-Z gene with fitness correlates in black-tailed godwits Limosa l. limosa. Ibis 152:368–377CrossRefGoogle Scholar
  52. Shamoun-Baranes J, Leyrer J, van Loon E, Bocher P, Robin F, Meunier F, Piersma T (2010) Stochastic atmospheric assistance and the use of emergency staging sites by migrants. Proc R Soc Lond B 277:1505–1511CrossRefGoogle Scholar
  53. Sillett TS, Holmes RT (2002) Variation in survivorship of a migratory songbird throughout its annual cycle. J Anim Ecol 71:296–308CrossRefGoogle Scholar
  54. Spaans B, van Kooten L, Cremer J, Leyrer J, Piersma T (2011) Densities of individually marked migrants away from the marking site to estimate population sizes: a test with three wader populations. Bird Study 58:130–140CrossRefGoogle Scholar
  55. Speakman JR, Krol E (2010) Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J Anim Ecol 79:726–746PubMedGoogle Scholar
  56. Tomkovich PS, Soloviev M (1996) Distribution, migrations and biometrics of knots Calidris canutus on Taimyr, Siberia. Ardea 84:85–98Google Scholar
  57. van de Kam J, Ens BJ, Piersma T (2004) Shorebirds—an illustrated behavioural ecology. KNNV, UtrechtGoogle Scholar
  58. van den Hout PJ, Spaans B, Piersma T (2008) Differential mortality of wintering shorebirds on the Banc d’Arguin, Mauritania, due to predation by large falcons. Ibis 150:219–230CrossRefGoogle Scholar
  59. van Dijk AJ, de Roder FE, Marteijn ECL, Spiekman H (1990) Summering waders on the Banc d’Arguin, Mauritania: a census in June 1988. Ardea 78:145–156Google Scholar
  60. van Gils JA, Piersma T, Dekinga A, Spaans B, Kraan C (2006) Shellfish dredging pushes a flexible avian top predator out of a marine protected area. PLoS Biol 4:2399–2404. doi: 10.1371/journal.pbio.0040376.g004 Google Scholar
  61. van Gils JA, van der Geest M, Jansen EJ, Govers LL, de Fouw J, Piersma T (2012) Trophic cascade induced by molluscivore predator alters pore-water biogeochemistry via competitive release of prey. Ecology 93:1143–1152PubMedCrossRefGoogle Scholar
  62. van Gils JA, van der Geest M, Leyrer J, Oudman T, Onrust J, de Fouw J, van der Heide T, van den Hout PJ, Spaans B, Dekinga A, Brugge M, Piersma T (2013) Toxin constraint explains diet choice and survival in a molluscivore shorebird (under review)Google Scholar
  63. Varner DM, Eichholz MW (2012) Annual and seasonal survival of trumpeter swans in the upper Midwest. J Wildl Manag 76:129–135CrossRefGoogle Scholar
  64. Vézina F, Gustowska A, Jalvingh KM, Chastel O, Piersma T (2009) Hormonal correlates and thermoragulatory consequences of molting on metabolic rate in a northerly wintering shorebird. Physiol Biochem Zool 822:129–142CrossRefGoogle Scholar
  65. White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46(Suppl):120–139CrossRefGoogle Scholar
  66. Wingfield JC (2008) Organization of vertebrate annual cycles: implications for control mechanisms. Philos Trans R Soc Lond B 363:425–441CrossRefGoogle Scholar
  67. Wolff WJ, Smit CJ (1990) The Banc d’Arguin, Mauritania, as an environment for coastal birds. Ardea 78:17–38Google Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Jutta Leyrer
    • 1
    • 2
    • 4
    Email author
  • Tamar Lok
    • 1
    • 2
  • Maarten Brugge
    • 1
  • Bernard Spaans
    • 1
  • Brett K. Sandercock
    • 3
  • Theunis Piersma
    • 1
    • 2
  1. 1.Department of Marine EcologyRoyal Netherlands Institute for Sea Research (NIOZ)TexelThe Netherlands
  2. 2.Animal Ecology Group, Centre for Ecological and Evolutionary Studies (CEES)University of GroningenGroningenThe Netherlands
  3. 3.Division of BiologyKansas State UniversityManhattanUSA
  4. 4.Centre for Integrative EcologyDeakin UniversityGeelongAustralia

Personalised recommendations