Journal of Ornithology

, Volume 154, Issue 3, pp 837–847 | Cite as

Trends and population dynamics of a Velvet Scoter (Melanitta fusca) population: influence of density dependence and winter climate

  • Göran Hartman
  • Andrea Kölzsch
  • Karl Larsson
  • Marcus Nordberg
  • Jacob Höglund
Original Article

Abstract

As many seaduck populations around the world have been reported to be in decline, there is an increasing demand for knowledge about intrinsic and extrinsic factors determining population dynamics of these species. In this study, we analyzed long-term dynamics of the summer population of Velvet Scoters (Melanitta fusca) breeding in the Åland archipelago in the Baltic Sea; in particular, we examined the influence of winter weather and density dependence on population change. The studied population exhibited substantial fluctuations but only a weak negative trend during the total period of 58 years (1949–2007), and no significant trend at all during the latter three decades of the study (1977–2007). We tested for density dependence and incorporated the winter North Atlantic Oscillation index into the model to test for effects of winter conditions. Our final model explained 56.3 % of the variance of population growth of the studied population. Delayed density dependence explained 29.7 %, pre-breeding climate 8.3 %, and post-breeding climate 18.3 % of the variance. That breeding success is density dependent in a delayed manner is in accordance with the apprehension that Velvet Scoters breed at the age of 2 years. We conclude that density dependence and winter conditions must be taken into consideration when discussing population changes in seaducks in general and the Velvet Scoter in particular.

Keywords

PBLR NAO TRIM Seaducks Baltic Sea 

Zusammenfassung

Trend und Populationsdynamik einer Samtentenpopulation ( Melanitta fusca ): Einfluss von Dichteabhängigkeit und Winterklima

Weltweit gehen zahlreiche Populationen von Meeresenten im Bestand zurück. Deshalb benötigen wir mehr Einsicht, wie intrinsische und extrinsische Faktoren die Populationsentwicklung dieser Arten bestimmen. In dieser Studie wurden Langzeittrends einer Brutpopulation von Samtenten (Melanitta fusca) untersucht, die auf den Ålandinseln in der Ostsee brüten. Wir haben insbesondere die Einflüsse von Winterwetter und Dichteabhängigkeit auf die Populationsentwicklung untersucht. Es waren beträchtliche Fluktuationen, aber nur ein schwacher negativer Trend in der gesamten Zeitspanne von 58 Jahren (1949–2007) und kein Trend in den letzten drei Jahrzehnten (1977–2007) der Studie zu beobachten. Mit einem Populationsmodell haben wir auf Dichteabhängigkeit getestet und untersucht, ob der Winter-NAO-Index im Modell als Indikator für Winterwetter einen Einfluss auf die Populationsentwicklung der Samtenten hat. Das beste Modell erklärt 56.3 % der Varianz im Wachstum der untersuchten Population. Verzögerte Dichteabhängigkeit erklärt 29.7 %, das Klima vor der Brutzeit 8.3 % und Klima nach der Brut 18.3 % der Varianz. Das Ergebnis, dass Bruterfolg verzögert dichteabhängig war, steht in Übereinstimmung mit der Hypothese, dass Samtenten im Alter von zwei Jahren beginnen zu brüten. Dichteabhängigkeit und Winterwetter sind also bei der Betrachtung der Populationsentwicklung von Meeresenten im Allgemeinen und Samtenten im Speziellen zu berücksichtigen.

References

  1. Alisauskas RT, Taylor JJ, Swoboda CJ, Kehoe FP (2004) Components of population growth rate for white-winged scoters in Saskatchewan, Canada. Anim Biodivers Conserv 27:451–460Google Scholar
  2. Almaraz P, Amat JA (2004) Multi-annual spatial and numeric dynamics of the white-headed duck Oxyura leucocephala in southern Europe: seasonality, density dependence and climate variability. J Anim Ecol 73:1013–1023CrossRefGoogle Scholar
  3. Andersson Å, Lindgren P-O, Staav R (1978) Linjetaxeringar av sjöfågel under häckningstid i Stockholms skärgård 1937–1938 och 1973–1974. Vår Fågelvärld 37:209–223Google Scholar
  4. Berndt RK, Hario M (1997) Velvet scoter. In: Hagemeijer WJ, Blair MJ (eds) The EBCC atlas of European breeding birds. Poyser, LondonGoogle Scholar
  5. Blums P, Nichols JD, Hines JE, Mednis A (2002) Sources of variation in survival and breeding site fidelity in three species of European ducks. J Anim Ecol 71:438–450CrossRefGoogle Scholar
  6. Brown PW (1981) Reproductive ecology and productivity of white-winged scoters. PhD thesis, University of Missouri, ColumbiaGoogle Scholar
  7. Brown PW, Fredrickson LH (1989) White-winged scoter, Melanitta fusca, populations and nesting on Redberry Lake, Saskatchewan. Can Field Nat 103:240–247Google Scholar
  8. Brown PW, Houston CS (1982) Longevity and age of maturity of white-winged scoters. J Field Ornithol 53:53–54Google Scholar
  9. Caughley G (1970) Eruption of ungulate populations, with emphasis on Himalayan thar in New Zealand. Ecology 51:53–72CrossRefGoogle Scholar
  10. Caughley G (1976) Wildlife management and the dynamics of ungulate populations. In: Coaker PH (ed) Applied biology, vol 1. Academic, Waltham, pp 183–246Google Scholar
  11. Coulson JC (1984) The population dynamics of the eider duck Somateria mollissima and evidence of extensive non-breeding by adult ducks. Ibis 126:525–543CrossRefGoogle Scholar
  12. Coulson JC (2010) A long-term study of the population dynamics of common eiders Somateria mollissima: why do several parameters fluctuate markedly. Bird Study 57:1–18CrossRefGoogle Scholar
  13. Cramp S, Simmons KEL (1977) The birds of the western Palearctic, vol 1. Oxford University Press, Oxford, pp 644–650Google Scholar
  14. Dementev GP, Gladkov NA (1952) Birds of the Soviet Union, vol. 4. Israel program for Scientific Translation, Jerusalem 1967, pp 599–604Google Scholar
  15. Dennis B, Taper ML (1994) Density dependence in time series observations of natural populations: estimation and testing. Ecol Monogr 64:205–224CrossRefGoogle Scholar
  16. Durinck J, Skov H, Andell P (1993) Seabird distribution and numbers in selected offshore parts of the Baltic Sea, winter 1992. Ornis Svec 3:11–26Google Scholar
  17. Elmberg J, Nummi P, Pöysä H, Sjöberg K (2003) Breeding success of sympatric dabbling ducks in relation to population density and food resources. Oikos 100:333–341CrossRefGoogle Scholar
  18. Elmberg J, Folkesson K, Guillemain M, Gunnarsson G (2009) Putting density dependence in perspective: nest density, nesting phenology, and biome, all matter to survival of simulated Anas platyrhynchos nests. J Avian Biol 40:317–326CrossRefGoogle Scholar
  19. Grenquist P (1951) On the recent fluctuations in numbers of waterfowl in the Finnish archipelago. Proc Int Ornithol Congr 10:494–496Google Scholar
  20. Grenquist P (1952) Recent changes in the populations of the eider, Somateria m. mollissima, and the velvet scoter, Melanitta f. fusca, in the Finnish archipelago. Pap Game Res 8:81–100 (In Swedish with English summary)Google Scholar
  21. Grenquist P (1965) Changes in abundance of some duck and sea bird populations off the coast of Finland. Finnish Game Res No. 27Google Scholar
  22. Gunnarsson G, Elmberg J (2008) Density-dependent nest predation—an experiment with simulated mallard nests in contrasting landscapes. Ibis 150:259–269CrossRefGoogle Scholar
  23. Gunnarsson G, Elmberg J, Sjöberg G, Pöysä H, Nummi P (2004) Why are there so many empty lakes? Food limits survival of mallard ducklings. Can J Zool 82:1698–1703CrossRefGoogle Scholar
  24. Gunnarsson G, Elmberg J, Sjöberg G, Pöysä H, Nummi P (2006) Experimental evidence for density dependent survival in mallard (Anas platyrhynchos) ducklings. Oecologia 149:203–213PubMedCrossRefGoogle Scholar
  25. Hario M, Rintala J (2006) Fledgling production and population trends in Finnish common eiders (Somateria mollissima mollissima)—evidence for density dependence. Can J Zool 84:1038–1046CrossRefGoogle Scholar
  26. Hario M, Komu R, Muuoronen P, Selin K (1986) Population trends among archipelago birds in Söderskär bird sanctuary 1963–1986. Suomen Riista 33:79–90 (In Finnish with English summary)Google Scholar
  27. Hario M, Mazerolle MJ, Saurola P (2009) Survival of female common eiders Somateria m. mollissima in a declining population in the northern Baltic Sea. Oecologia 159:747–756PubMedCrossRefGoogle Scholar
  28. Hartman G (1994) Long-term population development of a reintroduced beaver (Castor fiber) population in Sweden. Conserv Biol 8:713–717CrossRefGoogle Scholar
  29. Hartman G (2003) Irruptive population development of European beaver in southwest Sweden. Lutra 46:103–108Google Scholar
  30. Hengeveld R (1989) Dynamics of population invasions. Chapman and Hall, LondonGoogle Scholar
  31. Hurrell JW, Deser C (2010) North Atlantic variability: the role of the North Atlantic Oscillation. J Mar Syst 79:231–244CrossRefGoogle Scholar
  32. Johnston CA, Naiman RJ (1990) Aquatic patch creation in relation to beaver population trends. Ecology 71:1617–1621CrossRefGoogle Scholar
  33. Jónsson JE, Gardarsson A, Gill JA, Petersen A, Gunnarsson TG (2009) Seasonal weather effects on the common eider, a subarctic capital breeder, in Iceland over 55 years. Clim Res 38:237–248CrossRefGoogle Scholar
  34. Källander H (1996) Skrattmåsens Larus ridibundus populationsutveckling i Sverige under de senaste 25 åren. Ornis Svec 6:5–16Google Scholar
  35. Kehoe FP, Brown PW, Houston CS (1989) Survival and longevity of white-winged scoters nesting in central Saskatchewan. J Field Ornithol 60:133–288Google Scholar
  36. Kölzsch A, Sæther SA, Gustafsson H, Fiske P, Höglund J, Kålås JA (2007) Population fluctuations and regulation in great snipe: a time series analysis. J Anim Ecol 76:740–749PubMedCrossRefGoogle Scholar
  37. Koskimies J (1955) Juvenile mortality and population balance in velvet scoter (Melanitta fusca) in Maritime conditions. Proc Int Ornithol Congr 11:476–479Google Scholar
  38. Koskimies J (1957) Polymorphic variability in clutch size and laying date of velvet scoter, Melanitta fusca (L.). Ornis Fenn 34:118–128Google Scholar
  39. Koskimies J, Lahti L (1964) Cold-hardiness of the newly hatched young in relation to ecology and distribution in ten species of European ducks. Auk 81:281–307CrossRefGoogle Scholar
  40. Larsson K, Forslund P (1994) Population dynamics of barnacle goose Branta leucopsis in the Baltic area: density dependent effects on reproduction. J Anim Ecol 63:954–962CrossRefGoogle Scholar
  41. Lehikoinen A, Kilpi M, Öst M (2006) Winter climate affects subsequent breeding success of common eiders. Glob Change Biol 12:1355–1365CrossRefGoogle Scholar
  42. Meijer T, Drent RH (1999) A re-examination of the capital and income in breeding birds. Ibis 141:399–414CrossRefGoogle Scholar
  43. Merikallio E (1958) Finnish birds, their distribution and numbers. Fauna Fenn 5:1–181Google Scholar
  44. Mikola J, Miettinen M, Lehikoinen E, Lehtilä K (1994) The effects of disturbance caused by boating on survival and behaviour of velvet scoter Melanitta fusca ducklings. Biol Conserv 67:119–124CrossRefGoogle Scholar
  45. Murray DL, Anderson MG, Steury TD (2010) Temporal shift in density dependence among North American breeding duck populations. Ecology 91:571–581PubMedCrossRefGoogle Scholar
  46. Newton I (1998) Population limitation in birds. Academic, LondonGoogle Scholar
  47. Nordberg M (2002) Population development and estimated size of the breeding population of velvet scoters (Melanitta fusca) at the Åland islands during the latter part of the 20th century. Report no 91, Department of Conservation Biology, Swedish University of Agricultural Sciences, UppsalaGoogle Scholar
  48. Nordström M, Högmander J, Nummelin J, Laine J, Laanetu N, Korpimäki K (2002) Variable responses of waterfowl breeding populations to long-term removal of introduced mink. Ecography 25:385–394CrossRefGoogle Scholar
  49. Nummi P, Saari L (2003) Density-dependent decline of breeding success in an introduced, increasing mute swan Cygnus olor population. J Avian Biol 34:105–111CrossRefGoogle Scholar
  50. Pannekoek J, van Strien A (2005) TRIM 3 manual (Trends and indices for Monitoring data). Statistics Netherlands, VoorburgGoogle Scholar
  51. Parker H, Holm H (1990) Patterns of nutrient and energy expenditure in female common eiders nesting in the high arctic. Auk 107:660–668CrossRefGoogle Scholar
  52. Rintala J, Tiainen J (2004) Population trends of spring hunted sea ducks in the southern Finnish archipelago 1997–2004. Suomen Riista 50:65–75 (in Finnish)Google Scholar
  53. Rönkä MTH, Saari CLV, Lehikoinen EA, Suomela J, Häkkilä K (2005) Environmental changes and population trends of breeding waterfowl in northern Baltic sea. Ann Zool Fenn 42:587–602Google Scholar
  54. Rothery P, Newton I, Dale L, Wesolowski T (1997) Testing for density dependence allowing for weather effects. Oecologia 112:518–523CrossRefGoogle Scholar
  55. Royama T (1992) Analytical population dynamics. Population and community biology series 10. Chapman and Hall, LondonCrossRefGoogle Scholar
  56. Seavy NE, Reynolds MH, Link WA, Hatfield JS (2007) Postcatastrophe population dynamics and density dependence of an endemic island duck. J Wildl Manag 73:414–418Google Scholar
  57. Skov H, Heinänen S, Zydelis R, Bellebaum J, Bzoma S, Dagys M, Durinck J, Garthe S, Grishanov G, Hario M, Kieckbusch JJ, Kube J, Kuresoo A, Larsson K, Luiguoje L, Meissner W, Nehls HW, Nilsson L, Petersen IK, Roos MM, Pihl S, Sonntag N, Stock A, Stiepniece A, Wahl J (2011) Waterbird populations and pressures in the Baltic Sea. Nordic Council of Ministers, Copenhagen. TemaNord 2011:550Google Scholar
  58. Stenseth NC, Ottersen G, Hurrel JW, Mysterud A, Lima M, Chan KS, Yoccoz NG, Ådlandsvik B (2003) Studying climate effects on ecology through the use of climate indices, the North Atlantic oscillation, El Nino Southern Oscillation and beyond. Proc R Soc Lond B 270:2087–2096CrossRefGoogle Scholar
  59. Sugiura N (1978) Further analysis of the data by Akaike’s information criterion and the finite corrections. Communications in statistics, Theory and Methods, A7Google Scholar
  60. Svensson S, Svensson M, Tjernberg M (1999) Svensk fågelatlas. SOF, Stockholm (in Swedish)Google Scholar
  61. Swedish Environmental Protection Agency (1978) Biologiska inventeringsmetoder, BIN-Fåglar. Punkt-linjetaxering (in Swedish)Google Scholar
  62. Taylor D (1970) Growth, decline, and equilibrium in a beaver population at Sagehen Creek. PhD thesis, University of California, BerkeleyGoogle Scholar
  63. Traylor JJ, Alisaukas RT (2006) Effects of intrinsic and extrinsic factors on survival of white-winged scoter (Melanitta fusca deglandi) ducklings. Auk 123:67–81CrossRefGoogle Scholar
  64. Traylor JJ, Alisauskas RT, Kehoe FP (2004) Nesting ecology ofwhite-winged scoters (Melanitta fusca deglandi) at Redberry Lake,Saskatchewan. Auk 121:950–962Google Scholar
  65. Viksne J, Janaus M, Stipniece A (1996) Recent trends in the black-headed gull Larus ridibundus population in Latvia. Ornis Svec 6:39–44Google Scholar
  66. Viljugrein H, Stenseth NC, Smith GW, Steingbakk GH (2005) Density dependence in North American ducks. Ecology 86:245–254CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • Göran Hartman
    • 1
  • Andrea Kölzsch
    • 2
  • Karl Larsson
    • 1
  • Marcus Nordberg
    • 3
  • Jacob Höglund
    • 4
  1. 1.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.Project Group Movement Ecology, and Department of Animal EcologyNetherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  3. 3.Näringsavdelningen, Ålands landskapsregeringMariehamnÅland
  4. 4.Department of Population BiologyUppsala UniversityUppsalaSweden

Personalised recommendations