Advertisement

Journal of Ornithology

, Volume 154, Issue 3, pp 739–750 | Cite as

Licensed control does not reduce local Cormorant Phalacrocorax carbo population size in winter

  • D. E. ChamberlainEmail author
  • G. E. Austin
  • S. E. Newson
  • A. Johnston
  • N. H. K. Burton
Original Article

Abstract

Cormorants Phalacrocorax carbo have increased on European freshwaters, creating conflicts with fishing interests. As a result, control measures have been implemented in several countries, although their effect on the English population has yet to be determined. Wetland Bird Survey data was used to derive population growth rates (PGR) of non-coastal Cormorant populations in England. PGR was analysed in relation to control intensity at different scales (5- to 30-km radius) from 2001 to 2009 in order to determine (1) the extent to which control intensity (proportion of the local population shot per winter) was associated with site-level population change, and (2) whether potential effects of control intensity were evident on Special Protection Areas (SPAs). There were no clear differences in PGR when comparing sites which had experienced control versus sites where control had never been carried out. The few significant relationships between control intensity and Cormorant PGR detected were mostly positive, i.e. population growth was associated with higher control intensity. Control intensity was not related to Cormorant numbers in SPAs. Positive associations with control may arise because control is reactive, or because non-lethal effects cause greater dispersal of Cormorants. These results provide no evidence that Cormorant removal at local scales is having an effect on longer term (i.e. year-to-year) population size at a site level. They also suggest that control measures have not affected national population trends, although a better understanding of site use and movements of individual Cormorants needs to be developed at smaller scales (including those due to disturbance caused by control measures) to more fully understand processes at larger scales. Further research is also needed into the extent to which lethal and non-lethal effects of control on Cormorants are having the desired impact on predation rates of fish, and so help resolve the conflict between Cormorants and fisheries.

Keywords

Culling Disturbance Fisheries Human–wildlife conflict Population growth rate SPA Wetland Bird Survey 

Zusammenfassung

Genehmigte Bestandskontrollen führen nicht zur Reduzierung lokaler Kormoranbestände Phalacrocorax carbo im Winter

Durch die Zunahme der Kormoranbestände in europäischen Binnengewässern sind Konflikte mit Interessen der Fischerei entstanden. Als Folge davon wurden in verschiedenen Ländern bestandsregulierende Maßnahmen eingeführt, obwohl ein Effekt auf die englische Population bisher nicht festgestellt werden konnte. Zur Berechnung von Populationswachstumsraten (population growth rates PGR) binnenländischer Kormoranvorkommen in England wurden Daten aus Wasservogelzählungen herangezogen. Für die Jahre 2001 bis 2009 wurden PGR im Hinblick auf die Intensität der Maßnahmen in verschiedenen räumlichen Skalen (5 km bis 30 km Radius) berechnet, um folgendes zu bestimmen: (1) das Ausmaß in dem die Maßnahmenintensität (Anteil der geschossenen Individuen an der lokalen Population pro Winter) assoziiert war mit gebietsbezogenen Populationsveränderungen und (2) ob die Maßnahmenintensität mögliche Einflüsse auf EU-Vogelschutzgebiete (special protection areas SPAs) hat. Beim Vergleich der Gebiete mit und ohne Durchführung bestandsregulierender Maßnahmen konnten keine klaren Unterschiede in PGR nachgewiesen werden. Die wenigen signifikanten Unterschiede zwischen Maßnahmenintensität und Kormoran PGR waren meisten positiv, d.h. das Populationswachstum stand im Zusammenhang mit einer höheren Maßnahmenintensität. Die Maßnahmenintensität stand nicht in Beziehung mit Kormoranzahlen in SPAs. Positive Folgen bestandsregulierender Maßnahmen können entstehen, da solche Kontrollmaßnahmen reaktiv wirken oder nicht-letale Effekte eine größere Dispersion der Kormorane bedingt. Diese Ergebnisse belegen nicht, dass Kormoranabschüsse auf lokalen Ebenen einen gebietsbezogenen Langzeiteffekt (d.h. in darauf folgenden Jahren) auf die Populationsgröße haben. Sie deuten auch darauf hin, dass Kontrollmaßnahmen landesweite Populationstrends nicht beeinflussen. Obgleich ein besseres Verständnis von Gebietswahl und kleinräumigen Bewegungen von Kormoranen (einschließlich solcher, die durch Störungen aufgrund von Kontrollmaßnahmen verursacht werden) erreicht werden muss, um die großräumigen Prozesse besser bewerten zu können. Weitere Untersuchungen sind nötig, um zu klären, in welchem Ausmaß letale und nicht-letale Auswirkungen bestandsregulierender Maßnahmen bei Kormoranen tatsächlich einen gewünschten Effekt auf Fisch-Prädationsraten bewirken. Nur so kann der Konflikt zwischen Kormoranen und der Fischerei gelöst werden.

Notes

Acknowledgments

This work was funded through the Food and Environment Research Agency (Fera) by the UK Department for Environment, Food and Rural Affairs (Defra). Our thanks go to Tim Andrews and Ashley Smith from Defra and Graham Smith from Fera for their help and comments, and to members of the fish-eating birds policy review group and to Rhys Green and Sarah Dove (RSPB) for their comments. We are also indebted to Thomas Bregnballe, who provided highly constructive suggestions on a previous draft, and to Verena Keller for providing additional references. Spatial data on numbers of birds licensed to be and actually shot and advice on policy were provided by Natural England. Site-specific data on Cormorant numbers were obtained from the Wetland Bird Survey (WeBS), a joint scheme of the British Trust for Ornithology (BTO), Royal Society for the Protection of Birds (RSPB) and Joint Nature Conservation Committee (JNCC), in association with Wildfowl & Wetlands Trust (WWT), that aims to monitor non-breeding waterbirds in the UK.

Supplementary material

10336_2013_938_MOESM1_ESM.doc (143 kb)
Supplementary material 1 (DOC 143 kb)

References

  1. Bédard J, Nadeau A, Lepage M (1995) Double-crested Cormorant culling in the St. Lawrence river estuary. Colonial Waterbirds 18, special publication 1 The double-crested Cormorant: biology, conservation and management: 78–85Google Scholar
  2. Bibby CJ, Burgess ND, Hill DA, Mustoe S (2000) Bird census techniques, 2nd edn. Academic Press, LondonGoogle Scholar
  3. Bregnballe T, Volponi S, van Eerden MR, van Rijn S, Loretsen S-H (2011) Status of the breeding population of Great Cormorants Phalacrocoraxcarbo in the Western Palearctic in 2006. In Van Eerden MR, van Rijn S, Keller V (eds) Proceedings 7th International Conference on Cormorants: 8-20. Wetlands International-IUCN Cormorant Research Group, LelystadGoogle Scholar
  4. Carter SP, Delahay RJ, Smith GC, MacDonald DW, Riordan P, Etherington TR, Pimley ER, Walker NJ, Cheeseman CL (2007) Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: an analysis of a critical problem in applied ecology. Proc R Soc Lond B 274:2769–2777CrossRefGoogle Scholar
  5. Central Science Laboratory (2005) Modelling the consequences of the new Cormorant licensing policy. Department for Environment, Food and Rural Affairs, LondonGoogle Scholar
  6. Chamberlain DE, Toms MP, Glue DG (2009) Sparrowhawk Accipiter nisus presence and winter bird abundance. J Ornithol 150:247–254CrossRefGoogle Scholar
  7. Chamberlain DE, Austin GE, Green RE, Burton NHK (2012) Production of representative Cormorant population trends with confidence limits. BTO Research Report, article no 612. Thetford, British Trust for OrnithologyGoogle Scholar
  8. Donnelly CA, Woodroffe R, Cox DR, Bourne FJ, Cheeseman CL, Clifton-Hadley RS, Wei G, Gettinby G, Gilks P, Jenkins H, Johnston WT, Le Fevre AM, McInerney JP, Morrison WI (2006) Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439:843–846PubMedCrossRefGoogle Scholar
  9. Feltham MJ, Davis JM, Wilson BR, Holden T, Cowy IG, Harvey JP, Britton JR (1999) Case studies of the impact of fish-eating birds on inland fisheries in England and Wales. London, Ministry of Agriculture, Fisheries and FoodGoogle Scholar
  10. Frederiksen M, Bregnballe T (2000) Evidence for density-dependent survival in adult Cormorants from a combined analysis of recoveries and resightings. J Appl Ecol 69:737–752CrossRefGoogle Scholar
  11. Frederiksen M, Bregnballe T, van Eerden MR, van Rijn S, Lebreton JD (2002) Site fidelity of wintering Cormorants Phalacrocorax carbo sinensis in Europe. Wildl Biol 8:241–250Google Scholar
  12. Frederisksen M, Lebreton J-D, Bregnballe T (2001) The interplay between culling and density-dependence in the great Cormorant: a modelling approach. J Appl Ecol 38:617–627CrossRefGoogle Scholar
  13. Freeman SN, Newson SE (2008) On a log-linear approach to detecting ecological interactions in monitored populations. Ibis 150:250–258CrossRefGoogle Scholar
  14. Green RE (2008) Assessing the impact of culling on population size in the presence of uncertain density dependence: lessons from a great Cormorant population. J Appl Ecol 45:1683–1688CrossRefGoogle Scholar
  15. Hebert CE, Duffe J, Weseloh DVC, Senese EMT, Haffner GD (2005) Unique island habitats may be threatened by double crested Cormorants. J Wildl Manag 69:68–76CrossRefGoogle Scholar
  16. Jackson SF, Austin GE, Armitage MJS (2006) Surveying waterbirds away from major waterbodies: implications for waterbird population estimates in Great Britain. Bird Study 53:105–111CrossRefGoogle Scholar
  17. Kameda K, Ishida A, Narusue M (2003) Population increase of the great Cormorant Phalacrocorax carbo hanedae in Japan: conflicts with fisheries and trees and future perspectives. Vogelwelt 124(Suppl.):27–33Google Scholar
  18. Keller V, Antonizziata M, Mossiman-Kampe P, Rapin P (2012) Dix ans de reproduction du Gran Cormoran Phalacrocorax carbo en Suisse. Nos Oiseux 59:3–10Google Scholar
  19. Lekuona JM, Campos F (2000) Site fidelity of Cormorants Phalacrocorax carbo wintering in southern France and northern Spain. Ringing Migr 20:181–185CrossRefGoogle Scholar
  20. Lindell L, Mellin M, Musil P, Przybysz J, Zimmerman H (1995) Status and population development of breeding Cormorants Phalacrocorax carbo sinensis of the central European flyway. Ardea 83:81–92Google Scholar
  21. Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100:403–405CrossRefGoogle Scholar
  22. Musiani M, Mamo C, Boitani L, Callaghan C, Gates CC, Mattei L, Visalberghi E, Breck S, Volpi G (2003) Wolf depredation trends and the use of fladry barriers to protect livestock in western North America. Conserv Biol 17:1538–1547Google Scholar
  23. Naughton-Treves L (1997) Farming the forest edge: vulnerable places and people around Kibale National Park, Uganda. Geogr Rev 87:27–46CrossRefGoogle Scholar
  24. Newson SE, Hughes B, Russell IC, Ekins GR, Sellers RM (2004) Sub-specific differentiation and distribution of Great Cormorants Phalacrocorax carbo in Europe. Ardea 93:3–10Google Scholar
  25. Newson SE, Johnston A, Renwick AR, Baillie SR, Fuller RJ (2012) Modelling large-scale relationships between changes in woodland deer and bird populations. J Appl Ecol 49:278–286CrossRefGoogle Scholar
  26. Parrott D, McKay HV, Watola GV, Bishop JD, Langton S (2003) Effects of a short-term shooting program on nonbreeding Cormorants at inland fisheries. Wildl Soc Bull 31:1092–1098Google Scholar
  27. Patterson BD, Kasiki SM, Selempo E, Kays RW (2004) Livestock predation by lions (Panthera leo) and other carnivores on ranches neighboring Tsavo National Parks, Kenya. Biol Conserv 119:507–516CrossRefGoogle Scholar
  28. Pollitt MS, Hall C, Holloway SJ, Hearn RD, Marshall PE, Musgrove AJ, Robinson JA, Cranswick PA (2003) The Wetland Bird Survey 2000–01: Wildfowl and wader counts. Slimbridge, BTO/WWT/RSPB/JNCCGoogle Scholar
  29. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  30. Redpath S, Thirgood S (1997) Birds of prey and red grouse. Her Majesty’s Stationery Office, LondonGoogle Scholar
  31. Rehfisch MM, Wernham CV, Marchant JH (1999) Population, distribution, movements and survival of fish-eating birds in Great Britain. DETR, LondonGoogle Scholar
  32. Reymond A, Zuchuart O (1995) Perch fidelity in Cormorants Phalacrocorax carbo outside the breeding season. Ardea 83:281–284Google Scholar
  33. Richner H (1995) Wintering Cormorants Phalacrocorax carbo carbo in the Ythan estuary, Scotland: numerical and behavioural responses to fluctuating prey availability. Ardea 83:193–198Google Scholar
  34. Ridgway MS, Middel TA, Pollard JB (2011) Response of double-crested Cormorants to a large-scale egg oiling experiment on Lake Huron. J Wildl Manag 76:740–749Google Scholar
  35. Rose PM, Scott DA (1997) Waterfowl population estimates, 2nd edn. Wetlands International, WageningenGoogle Scholar
  36. Russell I, Parrot D, Ives M, Goldsmith D, Fox S, Clifton-Dey D, Prickett A, Drew T (2008) Reducing fish losses to Cormorants using artificial fish refuges: an experimental study. Fish Manag Ecol 15:189–198CrossRefGoogle Scholar
  37. Schifferli L, Burkhardt M, Keller V (2011) Population of the Great Cormorant Phalacrocorax carbo wintering in Switzerland, 1967–2003 and numbers during the breeding season. In: Van Eerden MR, van Rijn S, Keller V (eds) Proceedings 7th international conference on cormorants: 70–73. Wetlands International-IUCN Cormorant Research Group, LelystadGoogle Scholar
  38. Smith GC, Parrot D, Robertson PA (2008) Managing wildlife populations with uncertainty: cormorants Phalacrocorax carbo. J Appl Ecol 45:1675–1682PubMedCrossRefGoogle Scholar
  39. Stroud DA, Chambers D, Cook S, Buxton N, Fraser B, Clement P, Lewis P, McLean I, Baker H, Whitehead S (2001) The UK SPA network: its scope and content. JNCC, PeterboroughGoogle Scholar
  40. Thaxter CB, Sansom A, Thewlis RM, Calbrade NA, Ross-Smith VH, Bailey S, Mellan HJ, Austin GE (2010) Wetland Bird Survey Alerts 2006/2007: changes in numbers of wintering waterbirds in the constituent countries of the United Kingdom, Special Protection Areas (SPAs) and Sites of Special Scientific Interest (SSSIs). BTO Research Report 556. Thetford, British Trust for Ornithology. Available: http://www.bto.org/webs/alerts
  41. Thomson DL, Green RE, Gregory RD, Baillie SR (1998) The widespread declines of songbirds in rural Britain do not correlate with the spread of their avian predators. Proc R Soc Lond B 265:2057–2062CrossRefGoogle Scholar
  42. Valkama J, Korpimaki E, Arroyo B, Beja P, Bretagnolle V, Bro E, Kenward R, Manosa S, Redpath S, Thirgood S, Vinuela J (2005) Birds of prey as limiting factors of gamebird populations in Europe. Biol Rev 80:171–203PubMedCrossRefGoogle Scholar
  43. Van Eerden MR, Gregersen J (1995) Long-term changes in the north-west European population of Cormorants Phalarocorax carbo sinensis. Ardea 83:61–79Google Scholar
  44. Vijayan S, Pati BP (2002) Impact of changing cropping patterns on man-animal conflicts around Gir protected area with specific reference to Talala Sub-District, Gujarat, India. Popul Environ 23:541–559CrossRefGoogle Scholar
  45. Weladji RB, Tchamba MN (2003) Conflict between people and protected areas within the Bénoué wildlife conservation area, North Cameroon. Oryx 37:72–79CrossRefGoogle Scholar
  46. Wernham CV, Armitage M, Holloway SJ, Hughes B, Hughes R, Kershaw M, Madden JR, Marchant JH, Peach WJ, Rehfisch MR (1999) Population, distribution, movements and survival of fish-eating birds in Great Britain. DETR, LondonGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2013

Authors and Affiliations

  • D. E. Chamberlain
    • 1
    Email author
  • G. E. Austin
    • 2
  • S. E. Newson
    • 2
  • A. Johnston
    • 2
  • N. H. K. Burton
    • 2
  1. 1.Dipartimento di Scienza della Vita e Biologia dei SistemiUniversity of TurinTurinItaly
  2. 2.British Trust for Ornithology, The NunneryNorfolkUK

Personalised recommendations